Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncology ; 94(3): 176-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29306943

RESUMO

OBJECTIVE: Twenty to fifty percent of estrogen receptor-positive (ER+) metastatic breast cancers express mutations within the ER ligand-binding domain. While most studies focused on the constitutive ER signaling activity commonly engendered by these mutations selected during estrogen deprivation therapy, our study was aimed at investigating distinctive phenotypes conferred by different mutations within this class. METHODS: We examined the two most prevalent mutations, D538G and Y537S, employing corroborative genome-edited and lentiviral-transduced ER+ T47D cell models. We used a luciferase-based reporter and endogenous phospho-ER immunoblot analysis to characterize the estrogen response of ER mutants and determined their resistance to known ER antagonists. RESULTS: Consistent with their selection during estrogen deprivation therapy, these mutants conferred constitutive ER activity. While Y537S mutants showed no estrogen dependence, D538G mutants demonstrated an enhanced estrogen-dependent response. Both mutations conferred resistance to ER antagonists that was overcome at higher doses acting specifically through their ER target. CONCLUSIONS: These observations provide a tenable hypothesis for how D538G ESR1-expressing clones can contribute to shorter progression-free survival observed in the exemestane arm of the BOLERO-2 study. Thus, in those patients with dominant D538G-expressing clones, longitudinal analysis for this mutation in circulating free DNA may prove beneficial for informing more optimal therapeutic regimens.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mutação/genética , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Estrogênios/genética , Feminino , Humanos , Fenótipo , Transdução de Sinais/genética
2.
SLAS Discov ; 24(6): 669-681, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802412

RESUMO

Mcm2-7 is the molecular motor of eukaryotic replicative helicase, and the regulation of this complex is a major focus of cellular S-phase regulation. Despite its cellular importance, few small-molecule inhibitors of this complex are known. Based upon our genetic analysis of synthetic growth defects between mcm alleles and a range of other alleles, we have developed a high-throughput screening (HTS) assay using a well-characterized mcm mutant (containing the mcm2DENQ allele) to identify small molecules that replicate such synthetic growth defects. During assay development, we found that aphidicolin (inhibitor of DNA polymerase alpha) and XL413 (inhibitor of the DNA replication-dependent kinase CDC7) preferentially inhibited growth of the mcm2DENQ strain relative to the wild-type parental strain. However, as both strains demonstrated some degree of growth inhibition with these compounds, small and variable assay windows can result. To increase assay sensitivity and reproducibility, we developed a strategy combining the analysis of cell growth kinetics with linear discriminant analysis (LDA). We found that LDA greatly improved assay performance and captured a greater range of synthetic growth inhibition phenotypes, yielding a versatile analysis platform conforming to HTS requirements.


Assuntos
Replicação do DNA/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Leveduras/efeitos dos fármacos , Leveduras/genética , Alelos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Reprodutibilidade dos Testes , Mutações Sintéticas Letais , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa