Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801856

RESUMO

The human cytomegalovirus (HCMV) endoplasmic reticulum (ER)-resident glycoprotein UL148 is posited to play roles in immune evasion and regulation of viral cell tropism. UL148 prevents cell surface presentation of the immune cell costimulatory ligand CD58 while promoting maturation and virion incorporation of glycoprotein O, a receptor binding subunit for an envelope glycoprotein complex involved in entry. Meanwhile, UL148 activates the unfolded protein response (UPR) and causes large-scale reorganization of the ER. In order to determine whether the seemingly disparate effects of UL148 are related or discrete, we generated six charged cluster-to-alanine (CCTA) mutants within the UL148 ectodomain and compared them to wild-type UL148, both in the context of infection studies using recombinant viruses and in ectopic expression experiments, assaying for effects on ER remodeling and CD58 surface presentation. Two mutants, targeting charged clusters spanning residues 79 to 83 (CC3) and 133 to 136 (CC4), retained the potential to impede CD58 surface presentation. Of the six mutants, only CC3 retained the capacity to reorganize the ER, but it showed a partial phenotype. Wild-type UL148 accumulates in a detergent-insoluble form during infection. However, all six CCTA mutants were fully soluble, which implies a relationship between insolubility and organelle remodeling. Additionally, we found that the chimpanzee cytomegalovirus UL148 homolog suppresses surface presentation of CD58 but fails to reorganize the ER, while the homolog from rhesus cytomegalovirus shows neither activity. Collectively, our findings illustrate various degrees of functional divergence between homologous primate cytomegalovirus immunevasins and suggest that the capacity to cause ER reorganization is unique to HCMV UL148.IMPORTANCE In myriad examples, viral gene products cause striking effects on cells, such as activation of stress responses. It can be challenging to decipher how such effects contribute to the biological roles of the proteins. The HCMV glycoprotein UL148 retains CD58 within the ER, thereby preventing it from reaching the cell surface, where it functions to stimulate cell-mediated antiviral responses. Intriguingly, UL148 also triggers the formation of large, ER-derived membranous structures and activates the UPR, a set of signaling pathways involved in adaptation to ER stress. We demonstrate that the potential of UL148 to reorganize the ER and to retain CD58 are separable by mutagenesis and, possibly, by evolution, since chimpanzee cytomegalovirus UL148 retains CD58 but does not remodel the ER. Our findings imply that ER reorganization contributes to other roles of UL148, such as modulation of alternative viral glycoprotein complexes that govern the virus' ability to infect different cell types.


Assuntos
Antígenos CD58/metabolismo , Citomegalovirus/fisiologia , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático , Humanos , Evasão da Resposta Imune , Resposta a Proteínas não Dobradas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Tropismo Viral
2.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997207

RESUMO

UL148 is a viral endoplasmic reticulum (ER)-resident glycoprotein that contributes to human cytomegalovirus (HCMV) cell tropism. The influence of UL148 on tropism correlates with its potential to promote the expression of glycoprotein O (gO), a viral envelope glycoprotein that participates in a heterotrimeric complex with glycoproteins H and L that is required for infectivity. In an effort to gain insight into the mechanism, we used mass spectrometry to identify proteins that coimmunoprecipitate from infected cells with UL148. This approach led us to identify an interaction between UL148 and SEL1L, a factor that plays key roles in ER-associated degradation (ERAD). In pulse-chase experiments, gO was less stable in cells infected with UL148-null mutant HCMV than during wild-type infection, suggesting a potential functional relevance for the interaction with SEL1L. To investigate whether UL148 regulates gO abundance by influencing ERAD, small interfering RNA (siRNA) silencing of either SEL1L or its partner, Hrd1, was carried out in the context of infection. Knockdown of these ERAD factors strongly enhanced levels of gO but not other viral glycoproteins, and the effect was amplified in the presence of UL148. Furthermore, pharmacological inhibition of ERAD showed similar results. Silencing of SEL1L during infection also stabilized an interaction of gO with the ER lectin OS-9, which likewise suggests that gO is an ERAD substrate. Taken together, our results identify an intriguing interaction of UL148 with the ERAD machinery and demonstrate that gO behaves as a constitutive ERAD substrate during infection. These findings have implications for understanding the regulation of HCMV cell tropism.IMPORTANCE Viral glycoproteins in large part determine the cell types that an enveloped virus can infect and hence play crucial roles in transmission and pathogenesis. The glycoprotein H/L heterodimer (gH/gL) is part of the conserved membrane fusion machinery that all herpesviruses use to enter cells. In human cytomegalovirus (HCMV), gH/gL participates in alternative complexes in virions, one of which is a trimer of gH/gL with glycoprotein O (gO). Here, we show that gO is constitutively degraded during infection by the endoplasmic reticulum-associated degradation (ERAD) pathway and that UL148, a viral factor that regulates HCMV cell tropism, interacts with the ERAD machinery and slows gO decay. Since gO is required for cell-free virus to enter new host cells but dispensable for cell-associated spread that resists antibody neutralization, our findings imply that the posttranslational instability of a viral glycoprotein provides a basis for viral mechanisms to modulate tropism and spread.


Assuntos
Citomegalovirus/genética , Retículo Endoplasmático/virologia , Glicoproteínas de Membrana/genética , Proteínas/genética , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Tropismo Viral/genética , Células Cultivadas , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Retículo Endoplasmático/fisiologia , Células Epiteliais/virologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Humanos , Mutação com Perda de Função , Espectrometria de Massas , Glicoproteínas de Membrana/metabolismo , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Tropismo Viral/fisiologia , Internalização do Vírus
3.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045994

RESUMO

Eukaryotic cells are equipped with three sensors that respond to the accumulation of misfolded proteins within the lumen of the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR), which functions to resolve proteotoxic stresses involving the secretory pathway. Here, we identify UL148, a viral ER-resident glycoprotein from human cytomegalovirus (HCMV), as an inducer of the UPR. Metabolic labeling results indicate that global mRNA translation is decreased when UL148 expression is induced in uninfected cells. Further, we find that ectopic expression of UL148 is sufficient to activate at least two UPR sensors: the inositol-requiring enzyme-1 (IRE1), as indicated by splicing of Xbp-1 mRNA, and the protein kinase R (PKR)-like ER kinase (PERK), as indicated by phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) and accumulation of activating transcription factor 4 (ATF4). During wild-type HCMV infection, increases in Xbp-1 splicing, eIF2α phosphorylation, and accumulation of ATF4 accompany UL148 expression. UL148-null infections, however, show reduced levels of these UPR indicators and decreases in XBP1s abundance and in phosphorylation of PERK and IRE1. Small interfering RNA (siRNA) depletion of PERK dampened the extent of eIF2α phosphorylation and ATF4 induction observed during wild-type infection, implicating PERK as opposed to other eIF2α kinases. A virus with UL148 disrupted showed significant 2- to 4-fold decreases during infection in the levels of transcripts canonically regulated by PERK/ATF4 and by the ATF6 pathway. Taken together, our results argue that UL148 is sufficient to activate the UPR when expressed ectopically and that UL148 is an important cause of UPR activation in the context of the HCMV-infected cell.IMPORTANCE The unfolded protein response (UPR) is an ancient cellular response to ER stress that is of broad importance to viruses. Certain consequences of the UPR, including mRNA degradation and translational shutoff, would presumably be disadvantageous to viruses, while other attributes of the UPR, such as ER expansion and upregulation of protein folding chaperones, might enhance viral replication. Although HCMV is estimated to express well over 150 different viral proteins, we show that the HCMV ER-resident glycoprotein UL148 contributes substantially to the UPR during infection and, moreover, is sufficient to activate the UPR in noninfected cells. Experimental activation of the UPR in mammalian cells is difficult to achieve without the use of toxins. Therefore, UL148 may provide a new tool to investigate fundamental aspects of the UPR. Furthermore, our findings may have implications for understanding the mechanisms underlying the effects of UL148 on HCMV cell tropism and evasion of cell-mediated immunity.


Assuntos
Citomegalovirus/fisiologia , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Resposta a Proteínas não Dobradas , Proteínas Virais de Fusão/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Células Cultivadas , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Humanos , Fosforilação , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , eIF-2 Quinase/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(14): 4471-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831500

RESUMO

Viral glycoproteins mediate entry of enveloped viruses into cells and thus play crucial roles in infection. In herpesviruses, a complex of two viral glycoproteins, gH and gL (gH/gL), regulates membrane fusion events and influences virion cell tropism. Human cytomegalovirus (HCMV) gH/gL can be incorporated into two different protein complexes: a glycoprotein O (gO)-containing complex known as gH/gL/gO, and a complex containing UL128, UL130, and UL131 known as gH/gL/UL128-131. Variability in the relative abundance of the complexes in the virion envelope correlates with differences in cell tropism exhibited between strains of HCMV. Nonetheless, the mechanisms underlying such variability have remained unclear. We have identified a viral protein encoded by the UL148 ORF (UL148) that influences the ratio of gH/gL/gO to gH/gL/UL128-131 and the cell tropism of HCMV virions. A mutant disrupted for UL148 showed defects in gH/gL/gO maturation and enhanced infectivity for epithelial cells. Accordingly, reintroduction of UL148 into an HCMV strain that lacked the gene resulted in decreased levels of gH/gL/UL128-131 on virions and, correspondingly, decreased infectivity for epithelial cells. UL148 localized to the endoplasmic reticulum, but not to the cytoplasmic sites of virion envelopment. Coimmunoprecipitation results indicated that gH, gL, UL130, and UL131 associate with UL148, but that gO and UL128 do not. Taken together, the findings suggest that UL148 modulates HCMV tropism by regulating the composition of alternative gH/gL complexes.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Tropismo Viral , Núcleo Celular/metabolismo , Cromossomos Artificiais Bacterianos , Citomegalovirus/fisiologia , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosídeo Hidrolases/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal , Mutação , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Vírion/metabolismo
5.
J Virol ; 88(11): 6047-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623439

RESUMO

UNLABELLED: We report that UL133-UL138 (UL133/8), a transcriptional unit within the ULb' region (ULb') of the human cytomegalovirus (HCMV) genome, and UL97, a viral protein kinase encoded by HCMV, play epistatic roles in facilitating progression of the viral lytic cycle. In studies with HCMV strain TB40/E, pharmacological blockade or genetic ablation of UL97 significantly reduced the levels of mRNA and protein for IE2 and viral early and early-late genes during a second wave of viral gene expression that commenced at between 24 and 48 h postinfection. These effects were accompanied by significant defects in viral DNA synthesis and viral replication. Interestingly, deletion of UL133/8 likewise caused significant defects in viral DNA synthesis, viral gene expression, and viral replication, which were not exacerbated upon UL97 inhibition. When UL133/8 was restored to HCMV laboratory strain AD169, which otherwise lacks the locus, the resulting recombinant virus replicated similarly to the parental virus. However, during UL97 inhibitor treatment, the virus in which UL133/8 was restored showed significantly exacerbated defects in viral DNA synthesis, viral gene expression, and production of infectious progeny virus, thus recapitulating the differences between wild-type TB40/E and its UL133/8-null derivative. Phenotypic evaluation of mutants null for specific open reading frames within UL133/8 revealed a role for UL135 in promoting viral gene expression, viral DNA synthesis, and viral replication, which depended on UL97. Taken together, our findings suggest that UL97 and UL135 play interdependent roles in promoting the progression of a second phase of the viral lytic cycle and that these roles are crucial for efficient viral replication. IMPORTANCE: A unique feature of the herpesviruses, such as human cytomegalovirus (HCMV), is that they can undergo latency, a state during which the virus silences its gene expression, which allows lifelong viral persistence in immunocompetent hosts. We have uncovered an unexpected link between a cluster of HCMV genes involved in latency, UL133-UL138, and a virally encoded protein kinase, UL97, which plays crucial roles in manipulating the cell cycle during HCMV lytic replication. Although viral immediate early (IE) gene expression is essential for HCMV lytic replication, the activation of IE gene expression in latently infected cells is not sufficient to result in production of infectious virus. Our findings here and in an accompanying study (M. Umashankar, M. Rak, F. Bughio, P. Zagallo, K. Caviness, and F. D. Goodrum, J. Virol. 88:5987-6002, 2014) show that proteins expressed from the UL133-UL138 latency locus and UL97 play interdependent roles in overcoming checkpoints that restrict the viral lytic replication cycle, findings which suggest intriguing implications for establishment of and reactivation from HCMV latency.


Assuntos
Citomegalovirus/fisiologia , Epistasia Genética/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Virais/metabolismo , Latência Viral/genética , Replicação Viral/fisiologia , Benzimidazóis , Western Blotting , Cromossomos Artificiais Bacterianos , Citomegalovirus/genética , Primers do DNA/genética , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleosídeos , Proteínas Virais/genética , Replicação Viral/genética
6.
Proc Natl Acad Sci U S A ; 109(17): 6763-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22431601

RESUMO

Rates of hospital-acquired infections, specifically methicillin-resistant Staphylococcus aureus (MRSA), are increasingly being used as indicators for quality of hospital hygiene. There has been much effort on understanding the transmission process at the hospital level; however, interhospital population-based transmission remains poorly defined. We evaluated whether the proportion of shared patients between hospitals was correlated with genetic similarity of MRSA strains from those hospitals. Using data collected from 30 of 32 hospitals in Orange County, California, multivariate linear regression showed that for each twofold increase in the proportion of patients shared between 2 hospitals, there was a 7.7% reduction in genetic heterogeneity between the hospitals' MRSA populations (permutation P value = 0.0356). Pairs of hospitals that both served adults had more similar MRSA populations than pairs including a pediatric hospital. These findings suggest that concerted efforts among hospitals that share large numbers of patients may be synergistic to prevent MRSA transmission.


Assuntos
Genética Populacional , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/genética , California , Humanos , Análise Multivariada , Infecções Estafilocócicas/transmissão
7.
J Virol ; 87(11): 6359-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536674

RESUMO

We report a requirement for the viral protein kinase UL97 in human cytomegalovirus (HCMV) replication that maps to the ULb' region of the viral genome. A UL97-null (Δ97) mutant of strain TB40/E, which encodes a full-length ULb' region, exhibited replication defects, particularly in production of cell-free virus, that were more severe than those seen with a Δ97 mutant of laboratory strain AD169, which harbors extensive deletions in its ULb' region. These differences were recapitulated with additional HCMV strains by treatment with a UL97 kinase inhibitor, 1-(ß-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (maribavir). We observed lower levels of viral DNA synthesis and an increased requirement for UL97 in viral late gene expression in strains with full-length ULb' regions. Analysis of UL97-deficient TB40/E infections by electron microscopy revealed fewer C-capsids in nuclei, unusual viral particles in the cytoplasmic assembly compartment, and defective viral nuclear egress. Partial inhibition of viral DNA synthesis caused defects in production of cell-free virus that were up to ≈ 100-fold greater than those seen with cell-associated virus in strains TB40/E and TR, suggesting that UL97-dependent defects in cell-free virus production in strains with full-length ULb' regions were secondary to DNA synthesis defects. Accordingly, a chimeric virus in which the ULb' region of TB40/E was replaced with that of AD169 showed reduced effects of UL97 inhibition on viral DNA synthesis, late gene expression, and production of cell-free virus compared to parental TB40/E. Together, these results argue that the ULb' region encodes a factor(s) which invokes an increased requirement for UL97 during viral DNA synthesis.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/enzimologia , Genoma Viral , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
8.
mBio ; 10(6)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822584

RESUMO

Human cytomegalovirus (HCMV) encodes an endoplasmic reticulum (ER)-resident glycoprotein, UL148, which activates the unfolded protein response (UPR) but is fully dispensable for viral replication in cultured cells. Hence, its previously ascribed roles in immune evasion and modulation of viral cell tropism are hypothesized to cause ER stress. Here, we show that UL148 is necessary and sufficient to drive the formation of prominent ER-derived structures that on average occupy 5% of the infected cell cytoplasm. The structures are sites where UL148 coalesces with cellular proteins involved in ER quality control, such as HRD1 and EDEM1. Electron microscopy revealed that cells infected with wild-type but not UL148-null HCMV show prominent accumulations of densely packed ruffled ER membranes which connect to distended cisternae of smooth and partially rough ER. During ectopic expression of UL148-green fluorescent protein (GFP) fusion protein, punctate signals traffic to accumulate at conspicuous structures. The structures exhibit poor recovery of fluorescence after photobleaching, which suggests that their contents are poorly mobile and do not efficiently exchange with the rest of the ER. Small-molecule blockade of the integrated stress response (ISR) prevents the formation of puncta, leading to a uniform reticular fluorescent signal. Accordingly, ISR inhibition during HCMV infection abolishes the coalescence of UL148 and HRD1 into discrete structures, which argues that UL148 requires the ISR to cause ER reorganization. Given that UL148 stabilizes immature forms of a receptor binding subunit for a viral envelope glycoprotein complex important for HCMV infectivity, our results imply that stress-dependent ER remodeling contributes to viral cell tropism.IMPORTANCE Perturbations to endoplasmic reticulum (ER) morphology occur during infection with various intracellular pathogens and in certain genetic disorders. We identify that a human cytomegalovirus (HCMV) gene product, UL148, profoundly reorganizes the ER during infection and is sufficient to do so when expressed on its own. Our results reveal that UL148-dependent reorganization of the ER is a prominent feature of HCMV-infected cells. Moreover, we find that this example of virally induced organelle remodeling requires the integrated stress response (ISR), a stress adaptation pathway that contributes to a number of disease states. Since ER reorganization accompanies roles of UL148 in modulation of HCMV cell tropism and in evasion of antiviral immune responses, our results may have implications for understanding the mechanisms involved. Furthermore, our findings provide a basis to utilize UL148 as a tool to investigate organelle responses to stress and to identify novel drugs targeting the ISR.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Evasão da Resposta Imune/fisiologia , Proteínas de Membrana/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas do Envelope Viral/metabolismo , Tropismo Viral/fisiologia , Replicação Viral/fisiologia
9.
Viruses ; 10(12)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544948

RESUMO

The past few years have brought substantial progress toward understanding how human cytomegalovirus (HCMV) enters the remarkably wide spectrum of cell types and tissues that it infects. Neuropilin-2 and platelet-derived growth factor receptor alpha (PDGFRα) were identified as receptors, respectively, for the trimeric and pentameric glycoprotein H/glycoprotein L (gH/gL) complexes that in large part govern HCMV cell tropism, while CD90 and CD147 were also found to play roles during entry. X-ray crystal structures for the proximal viral fusogen, glycoprotein B (gB), and for the pentameric gH/gL complex (pentamer) have been solved. A novel virion gH complex consisting of gH bound to UL116 instead of gL was described, and findings supporting the existence of a stable complex between gH/gL and gB were reported. Additional work indicates that the pentamer promotes a mode of cell-associated spread that resists antibody neutralization, as opposed to the trimeric gH/gL complex (trimer), which appears to be broadly required for the infectivity of cell-free virions. Finally, viral factors such as UL148 and US16 were identified that can influence the incorporation of the alternative gH/gL complexes into virions. We will review these advances and their implications for understanding HCMV entry and cell tropism.


Assuntos
Citomegalovirus/fisiologia , Tropismo Viral , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Basigina/metabolismo , Linhagem Celular , Células Cultivadas , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/virologia , Células Epiteliais/virologia , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Neuropilina-2/metabolismo , Antígenos Thy-1/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo
10.
Infect Control Hosp Epidemiol ; 31(11): 1160-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20874503

RESUMO

BACKGROUND: Assessments of infectious disease spread in hospitals seldom account for interfacility patient sharing. This is particularly important for pathogens with prolonged incubation periods or carrier states. METHODS: We quantified patient sharing among all 32 hospitals in Orange County (OC), California, using hospital discharge data. Same-day transfers between hospitals were considered "direct" transfers, and events in which patients were shared between hospitals after an intervening stay at home or elsewhere were considered "indirect" patient-sharing events. We assessed the frequency of readmissions to another OC hospital within various time points from discharge and examined interhospital sharing of patients with Clostridium difficile infection. RESULTS: In 2005, OC hospitals had 319,918 admissions. Twenty-nine percent of patients were admitted at least twice, with a median interval between discharge and readmission of 53 days. Of the patients with 2 or more admissions, 75% were admitted to more than 1 hospital. Ninety-four percent of interhospital patient sharing occurred indirectly. When we used 10 shared patients as a measure of potential interhospital exposure, 6 (19%) of 32 hospitals "exposed" more than 50% of all OC hospitals within 6 months, and 17 (53%) exposed more than 50% within 12 months. Hospitals shared 1 or more patient with a median of 28 other hospitals. When we evaluated patients with C. difficile infection, 25% were readmitted within 12 weeks; 41% were readmitted to different hospitals, and less than 30% of these readmissions were direct transfers. CONCLUSIONS: In a large metropolitan county, interhospital patient sharing was a potential avenue for transmission of infectious agents. Indirect sharing with an intervening stay at home or elsewhere composed the bulk of potential exposures and occurred unbeknownst to hospitals.


Assuntos
Infecção Hospitalar/epidemiologia , Infecção Hospitalar/transmissão , Transferência de Pacientes , Idoso , California/epidemiologia , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Auditoria Médica , Pessoa de Meia-Idade , Alta do Paciente , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa