Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; : 1-12, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937256

RESUMO

Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.

2.
Chem Biodivers ; 19(4): e202100882, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146904

RESUMO

Four compounds, luteolin (1), 6-γ,γ-dimethylallylquercetin 7-O-ß-D-glucopyranoside (2), 6-γ,γ-dimethylallylkaempferol 7-O-ß-D-glucopyranoside (3), and 6-γ,γ-dimethylallyldihydrokaempferol 7-O-ß-D-glucoside (4), were isolated for the first time from AcOEt extract of the O. integerrima flower. We then evaluated the antioxidant effects of AcOEt, butanol, and MeOH extracts and their effects on H2 O2 against oxidative stress in HaCaT keratinocyte cell lines. Furthermore, 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH⋅) radical scavenging activities of 1-4 were determined and their mechanisms of action on tyrosinase were predicted by in silico studies. The results revealed that the AcOEt extract and 1-3 exhibited good DPPH⋅ radical scavenging activity. Furthermore, this extract also had a significant protective effect against H2 O2 -induced oxidative stress in HaCaT cells. In silico studies indicated that the activity of 1-3 may be due to tyrosinase inhibition with MM-GBSA free binding energies of -78.9, -70.1, and -71.1 kcal mol-1 , respectively, compared to 4 with an energy -56.9 kcal mol-1 .


Assuntos
Antioxidantes , Ochnaceae , Antioxidantes/química , Antioxidantes/farmacologia , Flores , Queratinócitos , Monofenol Mono-Oxigenase , Extratos Vegetais/química , Extratos Vegetais/farmacologia
3.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566220

RESUMO

Lichen-derived monoaromatic compounds are bioactive compounds, associated with various pharmacological properties: antioxidant, antifungal, antiviral, cytotoxicity, and enzyme inhibition. However, little is known about data regarding alpha-glucosidase inhibition and antimicrobial activity. Very few compounds were reported to have these activities. In this paper, a series of monoaromatic compounds from a lichen source were isolated and structurally elucidated. They are 3,5-dihydroxybenzoic acid (1), 3,5-dihydroxybenzoate methyl (2), 3,5-dihydroxy-4-methylbenzoic acid (3), 3,5-dihydroxy-4-methoxylbenzoic acid (4), 3-hydroxyorcinol (5), atranol (6), and methyl hematommate (7). To obtain more derivatives, available compounds from the previous reports such as methyl ß-orsellinate (8), methyl orsellinate (9), and D-montagnetol (10) were selected for bromination. Electrophilic bromination was applied to 8-10 using NaBr/H2O2 reagents to yield products methyl 5-bromo-ß-orsellinate (8a), methyl 3,5-dibromo-orsellinate (9a), 3-bromo-D-montagnetol (10a), and 3,5-dibromo-D-montagnetol (10b). Compounds were evaluated for alpha-glucosidase inhibition and antimicrobial activity against antibiotic-resistant, pathogenic bacteria Enterococcus faecium, Staphylococcus aureus, and Acinetobacter baumannii. Compound 4 showed stronger alpha-glucosidase inhibition than others with an IC50 value of 24.0 µg/mL. Synthetic compound 9a exhibited remarkable activity against Staphylococcus aureus with a MIC value of 4 µg/mL. Molecular docking studies were performed to confirm the consistency between in vitro and in silico studies.


Assuntos
Líquens , alfa-Glucosidases , Antibacterianos/farmacologia , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Staphylococcus aureus
4.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458771

RESUMO

α-Glucosidase plays a role in hydrolyzing complex carbohydrates into glucose, which is easily absorbed, causing postprandial hyperglycemia. Inhibition of α-glucosidase is therefore an ideal approach to preventing this condition. A novel polyprenylated benzoylphloroglucinol, which we named schomburgkianone I (1), was isolated from the fruit of Garcinia schomburgkiana, along with an already-reported compound, guttiferone K (2). The structures of the two compounds were determined using NMR and HRESIMS analysis, and comparisons were made with previous studies. Compounds 1 and 2 exhibited potent α-glucosidase inhibition (IC50s of 21.2 and 34.8 µM, respectively), outperforming the acarbose positive control. Compound 1 produced wide zones of inhibition against Staphylococcus aureus and Enterococcus faecium (of 21 and 20 mm, respectively), compared with the 19 and 20 mm zones of compound 2, at a concentration of 50 µg/mL. The MIC value of compound 1 against S. aureus was 13.32 µM. An in silico molecular docking model suggested that both compounds are potent inhibitors of enzyme α-glucosidase and are therefore leading candidates as therapies for diabetes mellitus.


Assuntos
Anti-Infecciosos , Garcinia , Frutas , Garcinia/química , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Staphylococcus aureus , alfa-Glucosidases
5.
Pharm Dev Technol ; 27(1): 83-94, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34802372

RESUMO

Throughout the COVID-19 pandemic, many have seriously worried that the plus burden of seasonal influenza that might create a destructive scenario, resulting in overwhelmed healthcare capacities and onwards loss of life. Many efforts to develop a safe and efficacious vaccine to prevent infection by coronavirus and influenza, highlight the importance of vaccination to combat infectious pathogens. While vaccines are traditionally given as injections into the muscle, microneedle (MN) patches designed to precisely deliver cargos into the cutaneous microenvironment, rich in immune cells, provide a noninvasive and self-applicable vaccination approach, reducing overall costs and improving access to vaccines in places with limited supply. The current review aimed to highlight advances in research on the development of MNs-mediated cutaneous vaccine delivery. Concluding remarks and challenges on MNs-based skin immunization are also provided to contribute to the rational development of safe and effective MN-delivered vaccines against these emerging infectious diseases.


Assuntos
COVID-19 , Vacinas contra Influenza , Orthomyxoviridae , Animais , COVID-19/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Agulhas , Pandemias/prevenção & controle , SARS-CoV-2 , Vacinação/métodos
6.
Saudi Pharm J ; 30(9): 1301-1314, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36249935

RESUMO

Vitex negundo L. (V. negundo) is one of the important medicinal and anticancer enhancer herbs. This plant is commonly used in the preparation of traditional drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the current study aimed to investigate antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human HepG2 and MCF-7 cell lines, by pure compounds isolated from targeted fractions of V. negundo which were characterized by NMR, FTIR and HRMS analysis and identified as artemetin (FLV1), vitexicarpin (FLV2), and penduletin (FLV3) compounds. The FLV1, FLV2, and FLV3 compounds were evaluated for the antiproliferative potential against HepG2 and MCF-7 cell lines by cell viability assay and exhibited IC50 values of 2.3, 23.9 and 5.6 µM and 3.9, 25.8, and 6.4 µM, respectively. In addition, those compounds increased the level of reactive oxygen species production, induced cell death occurred via apoptosis, demonstrated by Annexin V-staining cells, contributed significantly to DNA damage, and led to the activation of caspase3/caspase8 pathways.Additionally, molecular docking was also conducted to rationalize the cancer cells inhibitory and to evaluate the ability of the FLV1, FLV2, and FLV3 compounds to be developed as good drug candidates for cancers treatment.

7.
Chem Biodivers ; 18(4): e2000906, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33538053

RESUMO

This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50 >200 µM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate (6b) and 1,1'-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) (6e) were more potent than an acarbose positive control (IC50 93.6±0.49 µM), with IC50 values of 42.6±1.30 and 90.8±0.32 µM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one (1c), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one (1g), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one (2d), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one (2e), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione (3e), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione (3h), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione (4b), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one (5c) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 µM, respectively.


Assuntos
Benzofuranos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Benzofuranos/síntese química , Benzofuranos/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular
8.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500805

RESUMO

Panax vietnamensis, or Vietnamese ginseng (VG), an endemic Panax species in Vietnam, possesses a unique saponin profile and interesting biological activities. This plant is presently in danger of extinction due to over-exploitation, resulting in many preservation efforts towards the geographical acclimatization of VG. Yet, no information on the saponin content of the acclimatized VG, an important quality indicator, is available. Here, we analyzed the saponin content in the underground parts of two- to five-year-old VG plants acclimatized to Lam Dong province. Nine characteristic saponins, including notoginsenoside-R1, ginsenoside-Rg1, -Rb1, -Rd, majonoside-R1, -R2 vina-ginsenoside-R2, -R11, and pseudoginsenoside-RT4, were simultaneously determined by HPLC coupled with UV and with a charged aerosol detector (CAD). Analyzing the results illustrated that the detection of characteristic ocotillol-type saponins in VG by CAD presented a superior capacity compared with that of UV, thus implying a preferential choice of CAD for the analysis of VG. The quantitative results indicating the saponin content in the underground parts of VG showed an increasing tendency from two to five years old, with the root and the rhizome exhibiting different saponin accumulation patterns. This is the first study that reveals the preliminary success of VG acclimatization and thereby encourages the continuing efforts to develop this valuable saponin-rich plant.


Assuntos
Panax/química , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Raios Ultravioleta , Vietnã
9.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645855

RESUMO

Panax vietnamensis (PV), a wild Panax species discovered in Vietnam in 1973, has been increasingly overexploited due to its economic value and therapeutic uses. This resulted in the development of PV cultivation to meet the market demand. There is little information on the accumulation of saponins in PV during cultivation, but this information could serve as an indication of the appropriate harvest time. In this study we developed an HPLC-UV/ELSD method to simultaneously determine the content of 10 characteristic saponins in PV from 2-7 years old, including G-Rb1, G-Rd, G-Rg1, G-Re, N-R1, M-R1, M-R2, V-R2, V-R11, and p-RT4. The result indicated that from 2 to 5 years, the content of saponins in PV rhizome and radix increase 3.02 and 4.2 times, respectively, whereas from 5 to 7 years, no significant changes were observed. Hence, our study suggests that after 5 years of growth could be considered as an appropriate time for PV to be harvested. Among the analyzed saponins, G-Rg1, G-Rb1, G-Rd, and especially M-R2 were the major saponins that contributed to the change of PV's saponin content through the years. In addition, the developed and validated HPLC method was proven to be reliable and effective for quality control of PV.


Assuntos
Panax/metabolismo , Raízes de Plantas/metabolismo , Rizoma/metabolismo , Saponinas/metabolismo , Cromatografia Líquida de Alta Pressão , Saponinas/análise
10.
Molecules ; 24(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861213

RESUMO

Cisplatin is a platinum-based anticancer agent used for treating a wide range of solid cancers. One of the side effects of this drug is its severe nephrotoxicity, limiting the safe dose of cisplatin. Therefore, many natural products have been studied and applied to attenuate the toxicity of this compound. In this study, we found that steamed Vietnamese ginseng (Panax vietnamensis) could significantly reduce the kidney damage of cisplatin in an in vitro model using porcine proximal tubular LLC-PK1 kidney cells. From processed ginseng under optimized conditions (120 °C, 12 h), we isolated seven compounds (20(R,S)-ginsenoside Rh2, 20(R,S)-ginsenoside Rg3, ginsenoside Rk1, ginsenoside-Rg5, and ocotillol genin) that showed kidney-protective potential against cisplatin toxicity. By comparing the 50% recovery concentration (RC50), the R form of ginsenoside, Rh2 and Rg3, had RC50 values of 6.67 ± 0.42 µM and 8.39 ± 0.3 µM, respectively, while the S forms of ginsenoside, Rh2 and Rg3, and Rk1, had weaker protective effects, with RC50 ranging from 46.15 to 88.4 µM. G-Rg5 and ocotillol, the typical saponin of Vietnamese ginseng, had the highest RC50 (180.83 ± 33.27; 226.19 ± 66.16, respectively). Our results suggest that processed Vietnamese gingseng (PVG), as well as those compounds, has the potential to improve kidney damage due to cisplatin toxicity.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Rim/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Fracionamento Químico/métodos , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação
11.
J Pharm Biomed Anal ; 244: 116126, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581931

RESUMO

Polydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.


Assuntos
Caenorhabditis elegans , Indóis , Lipidômica , Metaboloma , Metabolômica , Polímeros , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Animais , Polímeros/metabolismo , Indóis/metabolismo , Metabolômica/métodos , Lipidômica/métodos , Metaboloma/efeitos dos fármacos , Lipídeos , Metabolismo dos Lipídeos/efeitos dos fármacos
12.
J Pharm Anal ; 14(1): 16-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352944

RESUMO

The spread of tuberculosis (TB), especially multidrug-resistant TB and extensively drug-resistant TB, has strongly motivated the research and development of new anti-TB drugs. New strategies to facilitate drug combinations, including pharmacokinetics-guided dose optimization and toxicology studies of first- and second-line anti-TB drugs have also been introduced and recommended. Liquid chromatography-mass spectrometry (LC-MS) has arguably become the gold standard in the analysis of both endo- and exo-genous compounds. This technique has been applied successfully not only for therapeutic drug monitoring (TDM) but also for pharmacometabolomics analysis. TDM improves the effectiveness of treatment, reduces adverse drug reactions, and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window. Based on TDM, the dose would be optimized individually to achieve favorable outcomes. Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs, aiding in the discovery of potential biomarkers for TB diagnostics, treatment monitoring, and outcome evaluation. This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades. Besides, we discussed the advantages and disadvantages of this technique in practical use. The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted. Lastly, we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies (pharmacometrics, drug and vaccine developments, machine learning/artificial intelligence, among others) to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.

13.
RSC Adv ; 14(7): 4871-4879, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38323014

RESUMO

Traditionally, lichen has been used for many purposes, but there remains a lack of understanding regarding the chemical composition and antimicrobial characteristics of Diorygma pruinosum, a lichen native to Vietnam. In this study, four sesquiterpenes, diorygmones B-E (1-4), one phenolic compound, 3,5-dihydroxy-4-methoxybenzoic acid (5), and one sterol, ß-sitosterol (6), were isolated and structurally elucidated from the cultured mycobiont of the lichen Diorygma pruinosum. Additionally, two compounds, stictic acid (7) and norstictic acid (8), were also isolated from the lichen D. pruinosum. Compounds 2-4 were new compounds. Their chemical structures were established using comprehensive spectroscopic data, and the absolute configurations were confirmed through the analysis of NOESY and electronic circular dichroism (ECD). Moreover, Staphylococcus aureus, a Gram-positive bacterium, has been responsible for various infections, including food poisoning. Herein, we identified and isolated 13 strains of S. aureus from street food sources. Among these strains, one was identified as a multidrug-resistant variant, designated as SAX15, and was subsequently used for further antimicrobial testing. Compounds 1-3 produced zones of inhibition against S. aureus SAX15 (each 5 mm) in comparison to commercial drugs such as penicillin, ciprofloxacin, gentamicin, cefoxitin, and clarithromycin, which displayed inhibitory zones of 7, 5, 10, 9.7, and 7 mm, respectively.

14.
Toxicol Lett ; 395: 50-59, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552811

RESUMO

A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25 mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for careful usage and dose adjustment.


Assuntos
Colestase , Ciclosporina , Ratos , Animais , Ciclosporina/toxicidade , Ciclosporina/metabolismo , Fígado/metabolismo , Rim/metabolismo , Colestase/induzido quimicamente , Metaboloma
15.
Nat Prod Res ; 37(12): 1935-1946, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35968760

RESUMO

Lichen-derived depsidones have been a successful source for alpha-glucosidase inhibitory agents with numerous advantages. In this article, derivatives of protocetraric acids were designed and synthesised. Diels-Alder reaction, esterification, and Friedel-Crafts alkylation of protocetraric acid with different reagents under Lewis acid were performed. Eleven products were prepared, including 10 new compounds and parmosidone A. Among them, compounds 2-4 and 6 had the novel skeletons. The newly synthetic products were evaluated for alpha-glucosidase inhibition. Among tested compounds, 9 showed the strongest activity, with an IC50 value of 5.9 µM. The molecular docking model indicated the consistency between in vitro and in silico data of alpha-glucosidase inhibition.


Assuntos
alfa-Glucosidases , Simulação de Acoplamento Molecular , Alquilação , Reação de Cicloadição
16.
Nat Prod Res ; : 1-5, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973941

RESUMO

A new carvotacetone sphaeranthone A and four known compounds 3-angeloyloxy-5-[2″,3″-epoxy-2″-methylbutanoyloxy]-7-hydroxycarvotacetone (2), 3-angeloyloxy-5-[3″-chloro-2″-hydroxy-2″-methylbutanoyloxy]-7-hydroxycarvotacetone (3), chrysosplenol D (4), and 3-O-methylquercetin (5) were isolated from leaves of Sphaeranthus africanus growing in Vietnam. Their chemical structures were elucidated by extensive 1D and 2D NMR analysis and high-resolution mass spectroscopy as well as comparisons in literature. Compounds 1-3 were evaluated for the alpha-glucosidase inhibition. They showed moderate activity with IC50 values of 103 ± 1.7, 146.8 ± 2.5, 49 ± 0.8 µg/mL, respectively.

17.
Nat Prod Res ; 37(20): 3470-3477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35687820

RESUMO

Boerhavia erecta is a tropical plant that is widely used in Asian folk medicine. Little is known about the alpha-glucosidase inhibition and antimicrobial properties of compounds from this plant. In the present study, the phytochemical study of the aerial parts of B. erecta collected in Vietnam was conducted using multiple chromatographic methods. The chemical structures of isolated compounds were identified by comprehensive spectroscopic methods. Two new compounds, berectone C (1) and (E)-tetracosyl 3-(3-hydroxy-4-methoxyphenyl)acrylate (4), together with the known compounds boeravinone C (2), liquiritigenin (3), bis(1H-indol-3-yl)methanone (5), and indole-3-carboxylic acid (6) were isolated and structural elucidated. Compounds 1 and 4 were evaluated for alpha-glucosidase inhibition and antimicrobial activity against antibiotic-resistant, pathogenic bacteria Enterococcus faecium, Staphylococcus aureus, and Acinetobacter baumannii. Compound 1 showed strong inhibition of the alpha-glucosidase enzyme (IC50 43 µg/mL). Only compound 1 exhibited antimicrobial property against A. baumannii, forming an inhibition zone of 11 mm.

18.
Nat Prod Res ; 37(21): 3563-3571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35749654

RESUMO

Tecoma stans is a tropical plant that is widely used in folk medicine. Little is known about the chemical constituents of flowers of this plant. From flowers of the native plant in Vietnam, 12 compounds were isolated and elucidated, including one new compound tecomastane (1) and eleven known compounds, (3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmane-9-one (2), bosciallin (3), chakyunglupulin B (4), (2S,6R)-2,6-dimethyloctane-1,8-diol (5), cleroindicin F (6), rengyoxide (7), 3,4-dihydroxybenzoic acid (8), methyl 3,4-dihydrobenzoate (9), 3,5-dihydroxybenzoic acid (10), luteolin (11), and indole-3-carboxylic acid (12). Compound 5 was a new natural product. The chemical structures of isolated compounds were identified by interpretation of their spectroscopic data (1D, 2D NMR, and HRESIMS) and by comparison with the literature. Compounds 1-7 and 10-12 were evaluated for alpha-glucosidase inhibition and antimicrobial activity against antibiotic-resistant, pathogenic bacteria Enterococcus faecium, Staphylococcus aureus, and Acinetobacter baumannii.

19.
Nat Prod Res ; : 1-6, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724809

RESUMO

Diorygma sp. is a native crustose-lichen in Vietnam. A mycobiont of this lichen was isolated, then cultivated. The present study described the isolation and structural elucidation of two new guaiane-type sesquiterpenes, namely diorygmones A-B. Their absolute chemical structures were elucidated by extensive 1D and 2D NMR analysis, high-resolution mass spectroscopy, electronic circular dichroism (ECD), and comparisons with the literatures. Compounds 1 and 2 were evaluated for cytotoxic activity against HepG2 cell line.

20.
Metabolites ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367920

RESUMO

Panax vietnamensis var. vietnamensis (PVV) and Panax vietnamensis var. fuscidiscus (PVF) both belong to Panax vietnamensis species and are chemically and morphologically similar, making it hard to distinguish for the consumer. Herein, 42 PVF and 12 PVV samples were collected in Quang Nam and Lai Chau Province, respectively, and subsequently characterized by ITSr-DNA sequence data to verify their origins. Next, untargeted metabolomics combined with multivariate statistical analysis was developed to differentiate PVV and PVF. The metabolic profiles of PVV and PVF were found to be distinct and classified well using Partial Least-Squares Discriminant Analysis (PLS-DA) in the training set. Among them, seven ginsenosides were of high abundance in PVV, while six were of high abundance in PVF. Next, the test set was used to validate 13 putative differential markers found in the training set, illustrating a complete match with the expression patterns of these ginsenosides in the training set. Finally, PLS-DA and linear Support Vector Machine models both indicated distinct ginsenoside profiles of PVV and PVF without misclassification in the test set. Conclusively, the developed untargeted metabolomics approach might serve as a powerful tool for the authentication of PVV and PVF at the metabolome level.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa