Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(7): e202110649, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919767

RESUMO

Nucleic acids are chemically modified to fine-tune their properties for biological function. Chemical tools for selective tagging of base modifications enables new approaches; the photosensitizers riboflavin and anthraquinone were previously proposed to oxidize N6 -methyladenine (m6 A) or 5-methylcytosine (5mdC) selectively. Herein, riboflavin, anthraquinone, or Rose Bengal were allowed to react with the canonical nucleosides dA, dC, dG, and dT, and the modified bases 5mdC, m6 A, 8-oxoguanine (dOG), and 8-oxoadenine (dOA) to rank their reactivities. The nucleoside studies reveal that dOG is the most reactive and that the native nucleoside dG is higher or similar in reactivity to 5mdC or m6 A; competition in both single- and double-stranded DNA of dG vs. 5mdC or 6mdA for oxidant confirmed that dG is favorably oxidized. Thus, photosensitizers are promiscuous nucleic acid oxidants with poor chemoselectivity that will negatively impact attempts at targeted oxidation of modified nucleotides in cells.


Assuntos
DNA/análise , Fármacos Fotossensibilizantes/química , Dano ao DNA , Conformação de Ácido Nucleico
2.
ACS Cent Sci ; 5(2): 218-228, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30834310

RESUMO

This Outlook calls attention to two seemingly disparate and emerging fields regarding viral genomics that may be correlated in a way previously overlooked. First, we describe identification of conserved potential G-quadruplex-forming sequences (PQSs) in viral genomes relevant to human health. Studies have demonstrated that PQSs are highly conserved and can fold to G-quadruplexes (G4s) to regulate viral processes. Key examples include G4s as a countermeasure to the host's immune system or G4-guided regulation of replication or transcription. Second, emerging data are discussed concerning the epitranscriptomic modification N 6-methyladenosine (m6A) in viral RNA installed by host proteins in a consensus sequence favoring 5'-GG(m6A)C-3'. The proposed pathways by which m6A is written, read, and erased in viral RNA genomes and the impact this has on viral replication are described. The structural reason why certain sites are selected for modification while others are not is still mysterious. Finally, we discuss our new observations regarding these previous sequencing data that identify m6A installation within the loops of two-tetrad PQSs in the RNA genomes of the Zika, HIV, hepatitis B, and SV40 viruses. We hypothesize that conserved viral PQSs can provide a framework (sequence and/or structural) for m6A installation. We also discuss literature sources suggesting that PQSs as sites of RNA modification could be a general phenomenon. We anticipate our observations will provide ample opportunities for exciting discoveries regarding the interplay between G4 structures and epitranscriptomic modifications of RNA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa