Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134876

RESUMO

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Expansão das Repetições de Trinucleotídeos , Metilação de DNA , Mutação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
2.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841603

RESUMO

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Divisão Celular , Senescência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos/genética , Estudos de Coortes , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Metilação de DNA/genética , Epigenômica , Células HCT116 , Humanos , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , RNA-Seq , Análise Espacial , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Nat Immunol ; 23(7): 1052-1062, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726060

RESUMO

The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Linfócitos T/metabolismo
4.
Genes Dev ; 38(9-10): 436-454, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866556

RESUMO

Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.


Assuntos
Diferenciação Celular , Proteínas de Drosophila , Genoma de Inseto , Poro Nuclear , Oogênese , Animais , Oogênese/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Diferenciação Celular/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Genoma de Inseto/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Feminino , Drosophila melanogaster/genética , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Drosophila/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética
5.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866555

RESUMO

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Assuntos
Diferenciação Celular , Núcleo Celular , Cromatina , Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cromatina/metabolismo , Cromatina/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Feminino , Diferenciação Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Drosophila/genética , Células Germinativas/metabolismo
6.
Nature ; 620(7972): 209-217, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438531

RESUMO

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Assuntos
Cromatina , Posicionamento Cromossômico , Cromossomos Humanos , Genoma Humano , Quinases da Glicogênio Sintase , Ensaios de Triagem em Larga Escala , Análise de Célula Única , Humanos , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamento Cromossômico/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/análise , DNA/metabolismo , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Quinases da Glicogênio Sintase/antagonistas & inibidores , Quinases da Glicogênio Sintase/deficiência , Quinases da Glicogênio Sintase/genética , Ensaios de Triagem em Larga Escala/métodos , Interfase , Reprodutibilidade dos Testes , RNA/análise , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos , Coesinas
7.
Mol Cell ; 81(8): 1666-1681.e6, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823140

RESUMO

Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.


Assuntos
Núcleo Celular/genética , Regulação da Expressão Gênica/genética , Proteínas Nucleares/genética , RNA/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , DNA/genética , Células HEK293 , Humanos , Corpos de Inclusão Intranuclear/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
8.
Mol Cell ; 77(1): 67-81.e7, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31784359

RESUMO

Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.


Assuntos
Cromatina/metabolismo , Poro Nuclear/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Aquaporinas/metabolismo , Sítios de Ligação/fisiologia , Linhagem Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Genoma/fisiologia , Masculino , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
9.
Mol Cell ; 73(6): 1174-1190.e12, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30745086

RESUMO

Chromatin loops enable transcription-factor-bound distal enhancers to interact with their target promoters to regulate transcriptional programs. Although developmental transcription factors such as active forms of Notch can directly stimulate transcription by activating enhancers, the effect of their oncogenic subversion on the 3D organization of cancer genomes is largely undetermined. By mapping chromatin looping genome-wide in Notch-dependent triple-negative breast cancer and B cell lymphoma, we show that beyond the well-characterized role of Notch as an activator of distal enhancers, Notch regulates its direct target genes by instructing enhancer repositioning. Moreover, a large fraction of Notch-instructed regulatory loops form highly interacting enhancer and promoter spatial clusters termed "3D cliques." Loss- and gain-of-function experiments show that Notch preferentially targets hyperconnected 3D cliques that regulate the expression of crucial proto-oncogenes. Our observations suggest that oncogenic hijacking of developmental transcription factors can dysregulate transcription through widespread effects on the spatial organization of cancer genomes.


Assuntos
Transformação Celular Neoplásica/genética , Cromatina/genética , Linfoma de Células B/genética , Oncogenes , Receptores Notch/genética , Neoplasias de Mama Triplo Negativas/genética , Sítios de Ligação , Linhagem da Célula/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Ciclina D1/genética , Ciclina D1/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Mutação , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
10.
PLoS Genet ; 18(11): e1010528, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449519

RESUMO

The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Regulação da Expressão Gênica , Humanos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genes cdc , Genoma , Células HCT116 , Coesinas
11.
Nat Methods ; 17(8): 822-832, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719531

RESUMO

There is a need for methods that can image chromosomes with genome-wide coverage, as well as greater genomic and optical resolution. We introduce OligoFISSEQ, a suite of three methods that leverage fluorescence in situ sequencing (FISSEQ) of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how four rounds of sequencing are sufficient to produce 3D maps of 36 genomic targets across six chromosomes in hundreds to thousands of cells, implying a potential to image thousands of targets in only five to eight rounds of sequencing. We also use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromosome through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunocytochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of large swaths of, if not entire, human genomes.


Assuntos
Coloração Cromossômica/métodos , Cromossomos/química , Cromossomos/genética , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos , Mapeamento Físico do Cromossomo
12.
Genome Res ; 29(6): 920-931, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31138619

RESUMO

In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.


Assuntos
Telômero/genética , Telômero/metabolismo , Animais , Análise Citogenética , Drosophila melanogaster/fisiologia , Humanos , Hibridização in Situ Fluorescente , Filogenia , Reação em Cadeia da Polimerase , Retroelementos , Telomerase/metabolismo , Homeostase do Telômero
13.
PLoS Genet ; 14(7): e1007393, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001329

RESUMO

Metazoan chromosomes are folded into discrete sub-nuclear domains, referred to as chromosome territories (CTs). The molecular mechanisms that underlie the formation and maintenance of CTs during the cell cycle remain largely unknown. Here, we have developed high-resolution chromosome paints to investigate CT organization in Drosophila cycling cells. We show that large-scale chromosome folding patterns and levels of chromosome intermixing are remarkably stable across various cell types. Our data also suggest that the nucleus scales to accommodate fluctuations in chromosome size throughout the cell cycle, which limits the degree of intermixing between neighboring CTs. Finally, we show that the cohesin and condensin complexes are required for different scales of chromosome folding, with condensin II being especially important for the size, shape, and level of intermixing between CTs in interphase. These findings suggest that large-scale chromosome folding driven by condensin II influences the extent to which chromosomes interact, which may have direct consequences for cell-type specific genome stability.


Assuntos
Adenosina Trifosfatases/metabolismo , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Complexos Multiproteicos/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Instabilidade Genômica/fisiologia , Interfase/genética , Coesinas
14.
Proc Natl Acad Sci U S A ; 115(10): E2183-E2192, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463736

RESUMO

Oligonucleotide (oligo)-based FISH has emerged as an important tool for the study of chromosome organization and gene expression and has been empowered by the commercial availability of highly complex pools of oligos. However, a dedicated bioinformatic design utility has yet to be created specifically for the purpose of identifying optimal oligo FISH probe sequences on the genome-wide scale. Here, we introduce OligoMiner, a rapid and robust computational pipeline for the genome-scale design of oligo FISH probes that affords the scientist exact control over the parameters of each probe. Our streamlined method uses standard bioinformatic file formats, allowing users to seamlessly integrate new and existing utilities into the pipeline as desired, and introduces a method for evaluating the specificity of each probe molecule that connects simulated hybridization energetics to rapidly generated sequence alignments using supervised machine learning. We demonstrate the scalability of our approach by performing genome-scale probe discovery in numerous model organism genomes and showcase the performance of the resulting probes with diffraction-limited and single-molecule superresolution imaging of chromosomal and RNA targets. We anticipate that this pipeline will make the FISH probe design process much more accessible and will more broadly facilitate the design of pools of hybridization probes for a variety of applications.


Assuntos
Genômica/métodos , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Animais , Arabidopsis , DNA/genética , DNA/metabolismo , Mineração de Dados , Humanos , Camundongos , Modelos Genéticos , Sondas de Oligonucleotídeos/metabolismo
15.
PLoS Genet ; 14(12): e1007872, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586358

RESUMO

Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method-integrative modeling of genomic regions (IMGR)-to increase the genomic resolution of our traces to 10 kb.


Assuntos
Passeio de Cromossomo/métodos , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/ultraestrutura , Modelos Genéticos , Células Cultivadas , Coloração Cromossômica/métodos , Estruturas Cromossômicas/química , Estruturas Cromossômicas/genética , Estruturas Cromossômicas/ultraestrutura , Cromossomos Humanos Par 19/química , Feminino , Corantes Fluorescentes , Humanos , Imageamento Tridimensional , Hibridização in Situ Fluorescente/métodos , Masculino , Sondas de Oligonucleotídeos , Linhagem
16.
Proc Natl Acad Sci U S A ; 114(51): 13369-13373, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-28827359

RESUMO

The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN- ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

17.
PLoS Genet ; 12(8): e1006169, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27541002

RESUMO

Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other's functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion.


Assuntos
Adenosina Trifosfatases/genética , Núcleo Celular/genética , Cromossomos/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Animais , Cromátides/genética , Segregação de Cromossomos/genética , Drosophila melanogaster/genética , Hibridização in Situ Fluorescente , Metáfase/genética , Mitose/genética , Interferência de RNA , Troca de Cromátide Irmã/genética
18.
Proc Natl Acad Sci U S A ; 113(42): 11750-11755, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698140

RESUMO

The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H2ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700-1,900-cm-1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H2ase generating H2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic-abiotic hybrid systems.

19.
Nano Lett ; 17(1): 414-420, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28026186

RESUMO

One of the key challenges facing liquid-phase transmission electron microscopy (TEM) of biological specimens has been the damaging effects of electron beam irradiation. The strongly ionizing electron beam is known to induce radiolysis of surrounding water molecules, leading to the formation of reactive radical species. In this study, we employ DNA-assembled Au nanoparticle superlattices (DNA-AuNP superlattices) as a model system to demonstrate that graphene and its derivatives can be used to mitigate electron beam-induced damage. We can image DNA-AuNP superlattices in their native saline environment when the liquid cell window material is graphene, but not when it is silicon nitride. In the latter case, initial dissociation of assembled AuNPs was followed by their random aggregation and etching. Using graphene-coated silicon nitride windows, we were able to replicate the observation of stable DNA-AuNP superlattices achieved with graphene liquid cells. We then carried out a correlative Raman spectroscopy and TEM study to compare the effect of electron beam irradiation on graphene with and without the presence of water and found that graphene reacts with the products of water radiolysis. We attribute the protective effect of graphene to its ability to efficiently scavenge reactive radical species, especially the hydroxyl radicals which are known to cause DNA strand breaks. We confirmed this by showing that stable DNA-AuNP assemblies can be imaged in silicon nitride liquid cells when graphene oxide and graphene quantum dots, which have also recently been reported as efficient radical scavengers, are added directly to the solution. We anticipate that our study will open up more opportunities for studying biological specimens using liquid-phase TEM with the use of graphene and its derivatives as biocompatible radical scavengers to alleviate the effects of radiation damage.


Assuntos
Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Manejo de Espécimes , DNA/química , Elétrons , Grafite/efeitos da radiação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Óxidos/química , Tamanho da Partícula , Compostos de Silício/química , Análise Espectral Raman , Propriedades de Superfície , Água
20.
J Am Chem Soc ; 139(15): 5309-5312, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28358191

RESUMO

Lead halide perovskite nanocrystals (NCs) have emerged as attractive nanomaterials owing to their excellent optical and optoelectronic properties. Their intrinsic instability and soft nature enable a post-synthetic controlled chemical transformation. We studied a ligand mediated transformation of presynthesized CsPbBr3 NCs to a new type of lead-halide depleted perovskite derivative nanocrystal, namely Cs4PbBr6. The transformation is initiated by amine addition, and the use of alkyl-thiol ligands greatly improves the size uniformity and chemical stability of the derived NCs. The thermodynamically driven transformation is governed by a two-step dissolution-recrystallization mechanism, which is monitored optically. Our results not only shed light on a decomposition pathway of CsPbBr3 NCs but also present a method to synthesize uniform colloidal Cs4PbBr6 NCs, which may actually be a common product of perovskite NCs degradation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa