Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936811

RESUMO

Across all species, retinal ganglion cells (RGCs) are the first retinal neurons generated during development, followed by the other retinal cell types. How are retinal progenitor cells (RPCs) able to produce these cell types in a specific and timely order? Here, we will review the different models of retinal neurogenesis proposed over the last decades as well as the extrinsic and intrinsic factors controlling it. We will then focus on the molecular mechanisms, especially the cascade of transcription factors that regulate, more specifically, RGC fate. We will also comment on the recent discovery that the ciliary marginal zone is a new stem cell niche in mice contributing to retinal neurogenesis, especially to the generation of ipsilateral RGCs. Furthermore, RGCs are composed of many different subtypes that are anatomically, physiologically, functionally, and molecularly defined. We will summarize the different classifications of RGC subtypes and will recapitulate the specification of some of them and describe how a genetic disease such as albinism affects neurogenesis, resulting in profound visual deficits.


Assuntos
Neurogênese/fisiologia , Células Ganglionares da Retina/metabolismo , Albinismo , Animais , Fatores de Crescimento de Fibroblastos , Proteínas Hedgehog , Humanos , Retina/crescimento & desenvolvimento , Retina/metabolismo , Células Ganglionares da Retina/classificação , Fatores de Transcrição/metabolismo
2.
Dev Growth Differ ; 58(5): 492-502, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27301906

RESUMO

In the vertebrate retina six types of neurons and one glial cell type are generated from multipotent retinal progenitor cells (RPCs) whose proliferation and differentiation are regulated by intrinsic and extrinsic factors. RPCs proliferate undergoing interkinetic nuclear migration within the neuroblastic layer, with their nuclei moving up and down along the apico-basal axis. Moreover, they only differentiate and therefore exit the cell cycle at the apical side of the neuroblastic layer. Sema6A and its receptors PlexinA4 and PlexinA2 control lamina stratification of the inner plexiform layer in the mouse retina. Nevertheless, their function in earlier developmental stages is still unknown. Here, we analyzed the embryonic retina of PlexinA2 and Sema6A knockout mice. Using time-lapse videomicroscopy we provide evidence that Sema6A/PlexinA2 signaling participates to interkinetic nuclear migration of RPCs around birth. When disrupted, RPCs migration is blocked at the apical side of the neuroblastic layer. This is the first evidence supporting a role for transmembrane molecules in the regulation of interkinetic nuclear migration in the mouse retina.


Assuntos
Movimento Celular/fisiologia , Embrião de Mamíferos/embriologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Retina/embriologia , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Embrião de Mamíferos/citologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Retina/citologia , Semaforinas/genética , Células-Tronco/citologia
3.
Elife ; 92020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32096760

RESUMO

The Deleted in Colorectal Carcinoma (Dcc) receptor plays a critical role in optic nerve development. Whilst Dcc is expressed postnatally in the eye, its function remains unknown as Dcc knockouts die at birth. To circumvent this drawback, we generated an eye-specific Dcc mutant. To study the organization of the retina and visual projections in these mice, we also established EyeDISCO, a novel tissue clearing protocol that removes melanin allowing 3D imaging of whole eyes and visual pathways. We show that in the absence of Dcc, some ganglion cell axons stalled at the optic disc, whereas others perforated the retina, separating photoreceptors from the retinal pigment epithelium. A subset of visual axons entered the CNS, but these projections are perturbed. Moreover, Dcc-deficient retinas displayed a massive postnatal loss of retinal ganglion cells and a large fraction of photoreceptors. Thus, Dcc is essential for the development and maintenance of the retina.


Assuntos
Receptor DCC/fisiologia , Vias Visuais/fisiologia , Animais , Receptor DCC/genética , Melaninas/isolamento & purificação , Camundongos , Mutação , Retina/embriologia , Retina/metabolismo
4.
J Comp Neurol ; 442(2): 130-55, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11754167

RESUMO

Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a repulsive guidance system that prevents inappropriate axons from crossing the central nervous system midline; this repulsive system is mediated by the secreted extracellular matrix protein Slit and its receptors Roundabout (Robo). Three distinct slit genes (slit1, slit2, and slit3) and three distinct robo genes (robo1, robo2, rig-1) have been cloned in mammals. However, to date, only Robo1 and Robo2 have been shown to be receptors for Slits. In rodents, Slits have been shown to function as chemorepellents for several classes of axons and migrating neurons. In addition, Slit can also stimulate the formation of axonal branches by some sensory axons. To identify Slit-responsive neurons and to help analyze Slit function, we have studied, by in situ hybridization, the expression pattern of slits and their receptors robo1 and robo2, in the rat central nervous system from embryonic stages to adult age. We found that their expression patterns are very dynamic: in most regions, slit and robo are expressed in a complementary pattern, and their expression is up-regulated postnatally. Our study confirms the potential role of these molecules in axonal pathfinding and neuronal migration. However, the persistence of robo and slit expression suggests that the couple slit/robo may also have an important function in the adult brain.


Assuntos
Encéfalo/embriologia , Diferenciação Celular/genética , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Adesão Celular/genética , Quimiotaxia/genética , Diencéfalo/citologia , Diencéfalo/embriologia , Diencéfalo/crescimento & desenvolvimento , Feminino , Feto , Cones de Crescimento/ultraestrutura , Mesencéfalo/citologia , Mesencéfalo/embriologia , Mesencéfalo/crescimento & desenvolvimento , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Rombencéfalo/citologia , Rombencéfalo/embriologia , Rombencéfalo/crescimento & desenvolvimento , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Proteínas Roundabout
5.
C R Biol ; 337(3): 153-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24702841

RESUMO

A noticeable characteristic of nervous systems is the arrangement of synapses into distinct layers. Such laminae are fundamental for the spatial organisation of synaptic connections transmitting different kinds of information. A major example of this is the inner plexiform layer (IPL) of the vertebrate retina, which is subdivided into at least ten sublayers. Another noticeable characteristic of these retina layers is that neurons are displayed in the horizontal plane in a non-random array termed as mosaic patterning. Recent studies of vertebrate and invertebrate systems have identified molecules that mediate these interactions. Here, we review the last mechanisms and molecules mediating retinal layering.


Assuntos
Retina/crescimento & desenvolvimento , Animais , Humanos , Invertebrados/fisiologia , Camundongos , Retina/anatomia & histologia , Retina/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa