RESUMO
The efficacy of HSV-TK/ganciclovir-based gene therapy on malignant gliomas largely relies on the amplitude of the bystander effect. In these experiments, the anti-inflammatory drug Sulfasalazine increased the HSV-TK/ganciclovir bystander effect in C6, 9L and LN18 cells but not in U87 glioma cells. Using bi-compartmental culture devices and conditioned medium transfer experiments, we showed that in C6, 9L and LN18 cells but not in U87 cells, Sulfasalazine also unveiled a new, contact-independent mechanism of HSV-TK/ganciclovir bystander effect. Upon treatment with ganciclovir, human LN18-TK but not U87-TK cells synthetized and released TNF-alpha in the culture medium. Sulfasalazine sensitized glioma cells to the toxic effect of TNF-alpha and enhanced its secretion in LN18-TK cells in response to GCV treatment. The caspase-8 inhibitor Z-IETD-FMK and a blocking antibody to TNF-alpha both inhibited the contact-independent bystander effect in LN18 cells. Taken together, these results suggest that TNF-alpha mediates the contact-independent bystander effect in LN18 cells. The treatment with GCV and/or Sulfasalazine of tumor xenografts consisting of a mix of 98% C6 and 2% C6-TK cells shows that Sulfasalazine is also a potent adjunct to the in vivo treatment of gliomas.
Assuntos
Efeito Espectador/fisiologia , Ganciclovir/uso terapêutico , Terapia Genética , Glioma/terapia , Simplexvirus/genética , Sulfassalazina/uso terapêutico , Timidina Quinase/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Humanos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Casein kinase II contributes to the growth and survival of malignant gliomas and attracts increasing attention as a therapeutic target in these tumors. Several reports have suggested that this strategy might be most relevant for specific subgroups of patients, namely Verhaak's classical and TP53 wild-type tumors. Using kinase assays and microarray genetic profiling in a series of 27 proprietary fresh frozen surgical glioma samples, we showed that constitutive CK2 kinase activation is not restricted to tumors that present increased copy numbers or mRNA expression of its catalytic or regulatory subunits, and can result from a functional activation by various cytokines from the glioma microenvironment. Using corresponding primary tumor and human astrocyte cell cultures as well as glioma cell lines, we confirmed that CK2 inhibition is selectively toxic to malignant glial tumors, without any restriction to tumor class or to TP53 status. We finally showed that while the contribution of CK2 to the constitutive NF-κB hyperactivation in malignant gliomas is at best moderate, a delayed activation of NF-κB may associate with the therapeutic resistance of glioma cells to CK2 inhibition.
Assuntos
Neoplasias Encefálicas/enzimologia , Perfilação da Expressão Gênica/métodos , Glioblastoma/enzimologia , Análise Serial de Tecidos/métodos , Apigenina/farmacologia , Neoplasias Encefálicas/genética , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Naftiridinas/farmacologia , Fenazinas , Microambiente Tumoral , Proteína Supressora de Tumor p53/genéticaRESUMO
Inhibitors of casein kinase 2 (CK2), a regulator of cell proliferation and mediator of the DNA damage response, are being evaluated in clinical trials for the treatment of cancers. Apigenin was capable of inhibiting the activation of CK2 following γ irradiation in LN18 and U87 malignant glioma cells. Apigenin and siRNA-mediated CK2 protein depletion further inhibited NF-κB activation and altered the Tyr68 phosphorylation of Chk2 kinase, a DNA damage response checkpoint kinase, following irradiation. However, CK2 inhibition did not decrease the ability of these glioma cells to repair double-strand DNA breaks, as assessed by COMET assays and γ-H2Ax staining. Likewise, apigenin and siRNA-induced depletion of CK2 failed to sensitize glioma cells to the cytotoxic effect of 2 to 10 G-rays of γ irradiation, as assessed by clonogenic assays. These results contrast with those found in other cancer types, and urge to prudence regarding the inclusion of malignant glioma patients in clinical trials that assess the radiosensitizing role of CK2 inhibitors in solid cancers.