RESUMO
Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design. Proficient in uncovering subtle and intricate patterns within extensive enhancer screening data, DREAM achieves cutting-edge sequence-based enhancer activity prediction and highlights critical sequence features implicating strong enhancer activity. Leveraging DREAM, we have engineered enhancers that surpass the potency of the strongest enhancer within the Drosophila genome by approximately 3.6-fold. Remarkably, these synthetic enhancers exhibited conserved functionality across species that have diverged more than billion years, indicating that DREAM was able to learn highly conserved enhancer regulatory grammar. Additionally, we designed silencers and cell line-specific enhancers using DREAM, demonstrating its versatility. Overall, our study not only introduces an interpretable approach for enhancer design but also lays out a general framework applicable to the design of other types of cis-regulatory elements.
RESUMO
Acyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes. By applying the MS/MS fragmentation rules learned from the MS/MS spectra of 8-DMQ-acyl-CoA authentic standards, an 8-DMQ-acyl-CoA in silico mass spectral library containing 33,344 high-resolution tandem mass spectra of 8,336 acyl-CoA species was created. The in silico library facilitated the high-throughput and automatic annotation of acyl-CoA using multiple metabolomic data processing tools, such as NIST MS Search and MSDIAL. The feasibility of the in silico library in a complex sample was demonstrated by profiling endogenous acyl-CoAs in multiple organs of an aging mouse. 53 acyl-CoA species were annotated, including 12 oxidized fatty acyl-CoAs and 3 novel nonfatty acyl-CoAs. False positive annotations were further screened by developing an eXtreme Gradient Boosting (XGBoost) based retention time prediction model. The organ distribution and the aging dynamics of acyl-CoAs in a mouse model were discussed for the first time, which helped to elucidate the organ-specific function of acyl-CoAs and the role of different acyl-CoA species during aging.
RESUMO
BACKGROUND: Cardiac fibrosis after myocardial infarction (MI) has been considered an important part of cardiac pathological remodeling. Immune cells, especially macrophages, are thought to be involved in the process of fibrosis and constitute a niche with fibroblasts to promote fibrosis. However, the diversity and variability of fibroblasts and macrophages make it difficult to accurately depict interconnections. METHODS: We collected and reanalyzed scRNA-seq and snRNA-seq datasets from 12 different studies. Differentiation trajectories of these subpopulations after MI injury were analyzed by using scVelo, PAGA and Slingshot. We used CellphoneDB and NicheNet to infer fibroblast-macrophage interactions. Tissue immunofluorescence staining and in vitro experiments were used to validate our findings. RESULTS: We discovered two subsets of ECM-producing fibroblasts, reparative cardiac fibroblasts (RCFs) and matrifibrocytes, which appeared at different times after MI and exhibited different transcriptional profiles. We also observed that CTHRC1+ fibroblasts represent an activated fibroblast in chronic disease states. We identified a macrophage subset expressing the genes signature of SAMs conserved in both human and mouse hearts. Meanwhile, the SPP1hi macrophages were predominantly found in the early stages after MI, and cell communication analysis indicated that SPP1hi macrophage-RCFs interactions are mainly involved in collagen deposition and scar formation. CONCLUSIONS: Overall, this study comprehensively analyzed the dynamics of fibroblast and macrophage subsets after MI and identified specific subsets of fibroblasts and macrophages involved in scar formation and collagen deposition.
Assuntos
Fibroblastos , Macrófagos , Infarto do Miocárdio , Análise de Célula Única , Transcriptoma , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Macrófagos/metabolismo , Animais , Transcriptoma/genética , Humanos , Comunicação Celular , Camundongos , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/metabolismo , Matriz Extracelular/metabolismo , Perfilação da Expressão GênicaRESUMO
The clinical efficacy of immunotherapy for hepatocellular carcinoma (HCC) is significantly limited by the low immunogenicity of the tumor. Recent studies have revealed that both pyroptosis and photothermal therapy can effectively induce tumor immunogenic cell death (ICD) in liver cancer cells. Polyphyllin II (PPII), the major active component of Rhizoma Paridis, has been demonstrated for the first time to induce pyroptosis in tumor cells, while IR780 is activated by 808 nm laser to transform light energy into heat energy, effectively eliminating tumor cells. However, both PPII and IR780 are afflicted with challenges such as low solubility and poor targeting, significantly limiting their utilization. To address these problems, the pyroptosis inducer PPII and photosensitizer IR780 were co-loaded in PLGA nanoparticles by precipitation method, and the aptamer AS1411 was modified on the surface of nanoparticles to construct the targeting nanoparticles (Apt/PPII/IR780-NPs). The nanoparticles exhibit a pH/NIR dual-response intelligent release feature, which realizes the targeted and controlled release of drugs in tumor site. Furthermore, it can rapidly release PPII to induce cell pyroptosis under laser irradiation, combining with IR780-based photothermal therapy exert a significant synergistic anti-tumor effect in vitro and in vivo. This process not only promotes maturation of DCs and activates effector T cells, thereby initiating adaptive immunity, but also generates enduring and effective immune memory. In addition, Apt/PPII/IR780-NPs significantly improved the Anti-PD-1 efficacy. In summary, chemo-photothermal therapy based on Apt/PPII/IR780-NPs can significantly enhance tumor ICD, which provides a promising new strategy for HCC immunotherapy.
Assuntos
Carcinoma Hepatocelular , Imunoterapia , Indóis , Neoplasias Hepáticas , Nanopartículas , Terapia Fototérmica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Piroptose , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Imunoterapia/métodos , Piroptose/efeitos dos fármacos , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Nanopartículas/química , Indóis/química , Indóis/farmacologia , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: This study was designed to assess stress levels and related factors during the coronavirus disease 2019 (COVID-19) epidemic among individuals in centralized quarantine camps in Wenzhou, China. METHODS: The survey was conducted using a questionnaire. The questionnaire included questions on sociodemographic characteristics, life events related to the COVID-19 and stressful situations, as well as Perceived Stress Scale-14. Participants included close contacts of patients with COVID-19 or at-risk individuals in quarantine camps. Multivariate logistic regression was used to analyze different factors affecting perceived stress. RESULTS: The prevalence of high stress among quarantine camp participants was 37.45%. Of the 881 respondents, 51.99% were concerned about the difficulty of controlling the epidemic, 46.20% were concerned about the health of themselves and their family members and 39.61% were concerned about not being able to leave their homes. Multivariate logistic regression analysis revealed statistically significant differences in the prevalence of stress among different groups for certain variables, including occupation, education level and knowledge of COVID-19 (all P < 0.05). Our study found that at-risk individuals and close contacts experienced high levels of stress in quarantine camps during the COVID-19 pandemic. CONCLUSIONS: These findings suggest that centralized quarantine policies should be adapted and optimized to minimize negative psychological effects on quarantined individuals.
Assuntos
COVID-19 , Quarentena , Estresse Psicológico , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , COVID-19/prevenção & controle , China/epidemiologia , Quarentena/psicologia , Masculino , Feminino , Adulto , Estresse Psicológico/epidemiologia , Pessoa de Meia-Idade , Inquéritos e Questionários , SARS-CoV-2 , Adulto Jovem , Adolescente , Fatores de Risco , Prevalência , IdosoRESUMO
Laryngeal cancer is a common malignancy of the larynx with a generally poor prognosis. This study systematically assessed the functional role of lncRNA BBOX1-AS1 in laryngeal carcinoma progression and associated molecular regulatory mechanisms. The proliferation, migration, and invasion of laryngeal carcinoma cells were detected by Cell Counting Kit-8, wound healing, clonal formation, and transwell assays. In addition, the interaction between BBOX1-AS1, Serine/Arginine Splicing Factor 1 (SRSF1), and Ephrin-B2 (EFNB2) mRNA was examined employing RNA immunoprecipitation and RNA pull-down experiments. Furthermore, western blotting, and RT-qPCR assays were adopted to detect the expression levels of BBOX1-AS1, SRSF1, and EFNB2. The impact of BBOX1-AS1 and SRSF1 on EFNB2 mRNA stability was examined using the RNA stability assay. BBOX1-AS1 was highly expressed in human laryngeal carcinoma tissues and cell lines. BBOX1-AS1 knockdown suppressed the growth, proliferation, migration, and invasion of laryngeal carcinoma cells. BBOX1-AS1 maintained the stability of EFNB2 mRNA in laryngeal carcinoma cells by recruiting SRSF1. EFNB2 knockdown inhibited the growth and metastatic function of laryngeal carcinoma cells in vitro. EFNB2 overexpression reversed the influence of BBOX1-AS1 knockdown on laryngeal cancer tumorigenesis. BBOX1-AS1 maintained EFNB2 mRNA stability by recruiting SRSF1, thereby aggravating laryngeal carcinoma malignant phenotypes. BBOX1-AS1 might be a new theoretical target for the treatment of laryngeal carcinoma.
RESUMO
Traditional Chinese medicine(TCM) preparations in medical institutions embody the characteristics of TCM and are the source for the development of new TCM drugs. This study summarizes the current situation, existing problems, and development trends of the TCM preparations in medical institutions in 31 provinces across China. Furthermore, this paper puts forward the development path of new TCM preparations based on the requirements of registration and management regulations of TCM preparations, providing new ideas for promoting the inheritance, innovation, and development of TCM.
Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Pesquisa , ChinaRESUMO
This study aims to investigate the mechanism of total saponins of Paridis Rhizoma in inducing the ferroptosis of MCF-7 cells and provide a theoretical basis for the clinical treatment of breast cancer with total saponins of Paridis Rhizoma. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the effects of different concentrations of total saponins of Paridis Rhizoma on the proliferation of MCF-7 cells. A phase contrast inverted microscope was used to observe the morphological changes of MCF-7 cells. The colony formation assay was employed to test the colony formation of MCF-7 cells. The lactate dehydrogenase(LDH) release test was conducted to determine the cell membrane integrity of MCF-7 cells. The cell scratch assay was employed to examine the migration of MCF-7 cells. After that, the level of reactive oxygen species(ROS) in MCF-7 cells was observed by an inverted fluorescence microscope, and the content of Fe~(2+) in MCF-7 cells was detected by the corresponding kit. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of MCF-7 cells. Western blot was employed to determine the expression of ferroptosis-related proteins, such as p53, solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long-chain family member 4(ACSL4), and transferrin receptor protein 1(TFR1) in MCF-7 cells. The results showed that 1.5, 3, 4.5, 6, 7.5, and 9 µg·mL~(-1) total saponins of Paridis Rhizoma significantly inhibited the proliferation of MCF-7 cells, with the IC_(50) of 4.12 µg·mL~(-1). Total saponins of Paridis Rhizoma significantly damaged the morphology of MCF-7 cells, leading to the formation of vacuoles and the gradual shrinkage and detachment of cells. Meanwhile, total saponins of Paridis Rhizoma inhibited the colony formation of MCF-7 cells, destroyed the cell membrane(leading to the release of LDH), and shortened the migration distance of MCF-7 cells. Total saponins of Paridis Rhizoma treatment significantly increased the content of ROS, induced oxidative damage, and led to the accumulation of Fe~(2+) in MCF-7 cells. Furthermore, total saponins of Paridis Rhizoma changed the mitochondrial structure, increased the mitochondrial membrane density, led to the decrease or even disappear of ridges, promoted the expression of p53 protein, down-regulated the expression of SLC7A11 and GPX4, and up-regulated the expression of ACSL4 and TFR1. In summary, total saponins of Paridis Rhizoma can significantly inhibit the proliferation and migration of MCF-7 cells and destroy the cell structure by inducing ferroptosis.
Assuntos
Neoplasias da Mama , Ferroptose , Espécies Reativas de Oxigênio , Rizoma , Saponinas , Humanos , Saponinas/farmacologia , Saponinas/química , Ferroptose/efeitos dos fármacos , Células MCF-7 , Rizoma/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Espécies Reativas de Oxigênio/metabolismo , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Proliferação de Células/efeitos dos fármacos , Primulaceae/químicaRESUMO
Predicting disease-related long non-coding RNAs (lncRNAs) is beneficial to finding of new biomarkers for prevention, diagnosis and treatment of complex human diseases. In this paper, we proposed a machine learning techniques-based classification approach to identify disease-related lncRNAs by graph auto-encoder (GAE) and random forest (RF) (GAERF). First, we combined the relationship of lncRNA, miRNA and disease into a heterogeneous network. Then, low-dimensional representation vectors of nodes were learned from the network by GAE, which reduce the dimension and heterogeneity of biological data. Taking these feature vectors as input, we trained a RF classifier to predict new lncRNA-disease associations (LDAs). Related experiment results show that the proposed method for the representation of lncRNA-disease characterizes them accurately. GAERF achieves superior performance owing to the ensemble learning method, outperforming other methods significantly. Moreover, case studies further demonstrated that GAERF is an effective method to predict LDAs.
Assuntos
Neoplasias Pulmonares/genética , Aprendizado de Máquina , Redes Neurais de Computação , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Gráficos por Computador/estatística & dados numéricos , Árvores de Decisões , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/classificação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Curva ROC , Fatores de Risco , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologiaRESUMO
Chlorin e6 (Ce6) has been extensively researched and developed as an antitumor therapy. Ce6 is a highly effective photosensitizer and sonosensitizer with promising future applications in photodynamic therapy, dynamic acoustic therapy, and combined acoustic and light therapy for tumors. Ce6 is also being studied for other applications in fluorescence navigation, antibacterials, and plant growth regulation. Here we review the role and research status of Ce6 in tumor therapy and the problems and challenges of its clinical application. Other biomedical effects of Ce6 are also briefly discussed. Despite the difficulties in clinical application, Ce6 has significant advantages in photodynamic therapy (PDT)/sonodynamic therapy (SDT) against cancer and offers several possibilities in clinical utility.
Assuntos
Clorofilídeos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Linhagem Celular TumoralRESUMO
Notch signaling and epigenetic factors are known to play critical roles in regulating tissue homeostasis in most multicellular organisms, but how Notch signaling coordinates with epigenetic modulators to control differentiation remains poorly understood. Here, we identify heterochromatin protein 1c (HP1c) as an essential epigenetic regulator of gut homeostasis in Drosophila. Specifically, we observe that HP1c loss-of-function phenotypes resemble those observed after Notch signaling perturbation and that HP1c interacts genetically with components of the Notch pathway. HP1c represses the transcription of Notch target genes by directly interacting with Suppressor of Hairless (Su(H)), the key transcription factor of Notch signaling. Moreover, phenotypes caused by depletion of HP1c in Drosophila can be rescued by expressing human HP1γ, suggesting that HP1γ functions similar to HP1c in Drosophila. Taken together, our findings reveal an essential role of HP1c in normal development and gut homeostasis by suppressing Notch signaling.
Assuntos
Proteínas de Drosophila , Animais , Proteínas Cromossômicas não Histona/genética , Drosophila/genética , Proteínas de Drosophila/genética , Heterocromatina , Homeostase , Humanos , Receptores Notch/genéticaRESUMO
In recent years, perovskite solar cells (PSCs) have been attracting more and more attention. Although perovskite materials have high defect tolerance, defects remain the main factor that seriously affects the efficiency and stability of PSCs. Herein, the ionic liquid of 1-butyl, 3-methylimidazolium acetate ([BMIM][ACO]) was introduced into the SnO2/perovskite interface for the first time. Thanks to the dipoles formed by ILs spontaneously, the work function of SnO2 was reduced and the transport ability of carriers was improved as well. Moreover, the Lewis acidity and lone pair electrons of [BMIM][ACO] contribute to the passivation of I- defects, Pb2+ defects, or Pb-I anti site defects. In addition, the presence of dipoles will repel the approach of photogenerated holes and the reverse transport of electrons, reducing the recombination of defect sites through field-effect passivation. The solar cell with efficiency of 19.43% was obtained under such a dual passivation effect, and the best device maintained 75.21% of the initial efficiency after 80 h of continuous illumination.
RESUMO
The utilization of healthcare services serves as a barometer for current and future health outcomes. Even in countries with modern healthcare IT infrastructure, however, fragmentation and interoperability issues hinder the (short-term) monitoring of utilization, forcing policymakers to rely on secondary data sources, such as surveys. This deficiency may be particularly problematic during public health crises, when ensuring proper and timely access to healthcare acquires special importance. We show that, in specific contexts, online pharmacies' digital footprint data may contain a strong signal of healthcare utilization. As such, online pharmacy data may enable utilization surveillance, i.e., the monitoring of short-term changes in utilization levels in the population. Our analysis takes advantage of the scenario created by the first wave of the Covid-19 pandemic in Mainland China, where the virus' spread lead to pervasive and deep reductions of healthcare service utilization. Relying on a large sample of online pharmacy transactions with full national coverage, we first detect variation that is strongly consistent with utilization reductions across geographies and over time. We then validate our claims by contrasting online pharmacy variation against credit-card transactions for medical services. Using machine learning methods, we show that incorporating online pharmacy data into the models significantly improves the accuracy of utilization surveillance estimates.
Assuntos
Atenção à Saúde , Pandemias , Humanos , Comércio , Saúde Pública , Aceitação pelo Paciente de Cuidados de SaúdeRESUMO
BACKGROUND: Previous studies reported that tuberculosis (TB) is associated with an increased risk of lung cancer or the survival and mortality of lung cancer. However, the impact of coexisting TB on the survival of lung cancer patients was controversial. We aimed to identify risk factors on the survival rate of patients with co-existent active TB and lung cancer. METHODS: One hundred seventy-three patients diagnosed with active TB and lung cancer from January 2016 to August 2021 in Shanghai pulmonary hospital were selected and divided into two groups (≤ 6 months, > 6 months) according to the diagnosis interval between active TB and lung cancer (the order of diagnosis is not considered). The clinical characteristics and survival were analyzed. Univariate and multivariate logistic regression analyses were used to identify the risk factors for overall survival (OS). RESULTS: One hundred seventy-three patients were diagnosed with lung cancer and active TB. The study population exhibited a median age of 64 years, with a majority of 81.5% being male, 58.0% of patients had a history of smoking. Among those involved, 93.6% had pulmonary TB, 91.9% were diagnosed with non-small cell lung cancer (NSCLC), 76.9% were Eastern Cooperative Oncology Group (ECOG) 0-2 and 12.7% were ECOG 3-4. We observed better survival in the > 6 months group compared with the ≤ 6 months group (hazard ratio [HR] 0.456, 95% confidence interval [CI]:0.234-0.889, P = 0.017). The 1-, 3-, and 5- year OS rates were 94.2%, 80.3%, and 77.6%, respectively, in the > 6 months group and 88.3%, 63.8%, and 58.5%, respectively, in the ≤ 6 months group. Surgery (HR 0.193, [95% CI, 0.038-0.097]; P = 0.046) and ECOG Performance Status (HR 12.866, [95% CI, 2.730-60.638]; P = 0.001) were independent prognostic factors in the > 6 months group. CONCLUSIONS: Patients diagnosed with lung cancer and active TB for more than half a year have a significantly better prognosis than those diagnosed within half a year. ECOG Performance Status and surgery might possibly affect the outcomes of patients with co-existent active TB and lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tuberculose , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias Pulmonares/complicações , Carcinoma Pulmonar de Células não Pequenas/complicações , Estudos Retrospectivos , China/epidemiologia , Prognóstico , Fatores de RiscoRESUMO
Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. Thus, it is essential to understand the regulatory network modulating the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-specific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led us to identify genetic interactions between the CDK8-CycC pair and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFß, or Transforming Growth Factor-ß) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFß signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the MED complex have revealed six additional subunits that are required for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and CycC, together with a few other subunits of the MED complex, may coordinate with other transcription cofactors in regulating Mad-dependent transcription during wing development in Drosophila.
Assuntos
Ciclina C/genética , Quinase 8 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Transdução de Sinais , Transcrição GênicaRESUMO
Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.
Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Esterco/análise , Genes Bacterianos , Antibacterianos/farmacologia , Quimiotaxia/genética , Selenito de Sódio/farmacologia , Galinhas/genética , Bactérias , Resistência Microbiana a Medicamentos/genética , Bacteroidetes , FirmicutesRESUMO
Itraconazole, a commonly used antifungal drug in the clinic approved by U.S. Food and Drug Administration (FDA), has been gradually found to have anti-tumor, angiogenesis inhibition and other pharmacological activities. However, its poor water solubility and potential toxicity limited its clinical application. In order to improve the water solubility and reduce the side effects caused by the high concentration of itraconazole, a novel preparation method of itraconazole sustained release microspheres was established in this study. Firstly, five kinds of polylactic acid-glycolic acid (PLGA) microspheres loaded with itraconazole were prepared by oil/water (O/W) emulsion solvent evaporation and then characterized by infrared spectroscopy. Then the particle size and morphology of the microspheres were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). After that, the particle size distribution, drug loading rate, entrapment efficiency, and drug release experiments were evaluated. Our results showed the microspheres prepared in this study had uniform particle size distribution and good integrity. Further study found that the average drug loading of the five kinds of microspheres prepared with PLGA 7505, PLGA 7510, PLGA 7520, PLGA 5020 and PLGA 0020 were 16.88, 17.72, 16.72, 16.57, and 16.64%, respectively, and the encapsulation rate all reached about 100%. More surprisingly, the release experimental results showed that the microspheres prepared with PLGA 7520 did not show sudden release, showing good sustained release performance and high drug release rate. To sum up, this study optimized the preparation method of sustained-release microspheres without sudden release, which provides a new solution for the delivery of itraconazole in the clinic.
Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Preparações de Ação Retardada , Itraconazol , Microesferas , Emulsões , Solventes , Tamanho da PartículaRESUMO
Morinda officinalis is a traditional Chinese tonic herb, and have been used in the treatment of multiple diseases. Here, three iridoid glycosides isolated from M. officinalis were evaluated for their roles in the autophagy-lysosomal pathway. All three iridoid glycosides could induce TFEB/TFE3-mediated lysosomal biogenesis and trigger autophagy. Interestingly, they promoted the nuclear import of TFEB/TFE3 without affecting their nuclear export, suggesting their role in the maintenance of lysosomal homeostasis. The results from this study shed light on the identification of autophagy activators from M. officinalis and provide a basis for developing them in the treatment of oxidative stress-involved diseases.
RESUMO
OBJECTIVE: To investigate the clinical efficacy of electrophysiological appropriateness technique (EAT) therapy based on the traditional Chinese medicine (TCM) meridian theory in managing postoperative pain after urethral reconstruction surgery. METHODS: Using the real-world study approach, we enrolled 61 male patients undergoing urethral reconstruction and divided them into a control group (n = 30) and an observation group (n = 31), the former receiving patient-controlled intravenous analgesia (PCIA), while the latter PCIA plus EAT at 4 pairs of acupoints (Hegu, Neiguan, Zusanli and Sanyinjiao bilaterally) and the Ashi point, with 100 mg tramadol hydrochloride given orally as remedial analgesia in both groups in case of postoperative Visual Analogue Scale (VAS) score ≥4. We compared the VAS scores at 4, 12, 24 and 48 hours postoperatively, the dose of cumulative fentanyl used at 48 hours, the number of cases needing remedial analgesia, the time to first flatus and the incidence of adverse reactions between the two groups of patients. RESULTS: The VAS scores were markedly lower in the observation than in the control group at 4, 12, 24 and 48 hours after surgery (P < 0.05), with statistically significant differences in time-dependent effect and interactive effect (P < 0.05). Significant reduction was observed in the doses of cumulative fentanyl (P < 0.05) and remedial tramadol analgesia (P < 0.05), time to first flatus (P < 0.05), and incidence of adverse reactions (P < 0.05) in the observation group in comparison with the controls. CONCLUSION: Electrophysiological therapy based on the TCM meridian theory can safely and effectively alleviate postoperative pain after urethral reconstruction, reduce opioid consumption, and decrease adverse events.
Assuntos
Meridianos , Tramadol , Humanos , Masculino , Medicina Tradicional Chinesa , Flatulência , Dor Pós-Operatória/tratamento farmacológico , Analgesia Controlada pelo Paciente/métodos , Analgésicos Opioides/uso terapêutico , Tramadol/uso terapêutico , Fentanila/uso terapêuticoRESUMO
As arsenic widely exists in nature and has been used in the pharmaceutical preparations, the traditional Chinese medicine(TCM) with arsenic include realgar(As_2S_2 or As_4S_4), orpiment(As_2S_3), and white arsenic(As_2O_3). Among the above representative medicine, the TCM compound formulas with realgar are utilized extensively. Just in Chinese Pharmacopoeia(2020 edition), there are 37 Chinese patent medicines including realgar. The traditional element analysis focuses on the detection of the total amount of elements, which neglects the study on the speciation and valence of elements. The activity, toxicity, bioavailability, and metabolic pathways of arsenic in vivo are closely related to the existence of its form, and different forms of arsenic have different effects on organisms. Therefore, the study on the speciation and valence of arsenic is of great importance for arsenic-containing TCMs and their compound formulas. This paper reviewed four aspects of the speciation and valence of arsenic, including property, absorption and metabolism, toxicity, and analytical assay.