Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(27): 12538-12547, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917470

RESUMO

Lung cancer poses a serious threat to people's lives and health due to its high incidence rate and high mortality rate, making it necessary to effectively conduct early screening. As an important biomarker for lung cancer, the detection of n-propanol gas suffers from a low response value and a high detection limit. In this paper, flower-like Ho-doped ZnO was fabricated by the coprecipitation method for n-propanol detection at subppm concentrations. The gas sensor based on the 3% Ho-doped ZnO showed selectivity to n-propanol gas. Its response value to 100 ppm n-propanol was 341 at 140 °C, and its limit of detection (LOD) was about 25.6 ppb, which is lower than that of n-propanol in the breath of a healthy person (150 ppb). The calculation results show that the adsorption of n-propanol on a Ho-doped ZnO surface releases more energy than isopropanol, ethanol, formaldehyde, acetone, and ammonia. The enhanced gas-sensing properties of the Ho-doped ZnO material can be attributed to the fact that the Ho-doping distorts the crystal lattice of the ZnO, increases the specific surface area, and generates a large amount of oxygen defects. In addition, the doped Ho partially forms a Ho2O3/ZnO heterojunction in the material and improves the gas-sensing properties. The 3% Ho-doped ZnO material is expected to be a promising candidate for the trace detection of n-propanol gas.

2.
Inorg Chem ; 62(33): 13328-13337, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37556609

RESUMO

It is a challenging task to utilize efficient electrocatalytic metal hydroxide-based materials for the oxygen evolution reaction (OER) in order to produce clean hydrogen energy through water splitting, primarily due to the restricted availability of active sites and the undesirably high adsorption energies of oxygenated species. To address these challenges simultaneously, we intentionally engineer a hollow star-shaped Ag/CoMo-LDH heterostructure as a highly efficient electrocatalytic system. This design incorporates a considerable number of heterointerfaces between evenly dispersed Ag nanoparticles and CoMo-LDH nanosheets. The heterojunction materials have been prepared using self-assembly, in situ transformation, and spontaneous redox processes. The nanosheet-integrated hollow architecture can prevent active entities from agglomeration and facilitate mass transportation, enabling the constant exposure of active sites. Specifically, the powerful electronic interaction within the heterojunction can successfully regulate the Co3+/Co2+ ratio and the d-band center, resulting in rational optimization of the adsorption and desorption of the intermediates on the site. Benefiting from its well-defined multifunctional structures, the Ag0.4/CoMo-LDH with optimal Ag loading exhibits impressive OER activity, the overpotential being 290 mV to reach a 10 mA cm-2 current density. The present study sheds some new insights into the electron structure modulation of hollow heterostructures toward rationally designing electrocatalytic materials for the OER.

3.
Inorg Chem ; 62(21): 8347-8356, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37200596

RESUMO

Accomplishing a green hydrogen economy in reality through water spitting ultimately relies upon earth-abundant efficient electrocatalysts that can simultaneously accelerate the oxygen and hydrogen evolution reactions (OER and HER). The perspective of electronic structure modulation via interface engineering is of great significance to optimize electrocatalytic output but remains a tremendous challenge. Herein, an efficient tactic has been explored to prepare nanosheet-assembly tumbleweed-like CoFeCe-containing precursors with time-/energy-saving and easy-operating features. Subsequently, the final metal phosphide materials containing multiple interfaces, denoted CoP/FeP/CeOx, have been synthesized via the phosphorization process. Through the optimization of the Co/Fe ratio and the content of the rare-earth Ce element, the electrocatalytic activity has been regulated. As a result, bifunctional Co3Fe/Ce0.025 reaches the top of the volcano for both OER and HER simultaneously, with the smallest overpotentials of 285 mV (OER) and 178 mV (HER) at 10 mA cm-2 current density in an alkaline environment. Multicomponent heterostructure interface engineering would lead to more exposed active sites, feasible charge transport, and strong interfacial electronic interaction. More importantly, the appropriate Co/Fe ratio and Ce content can synergistically tailor the d-band center with a downshift to enhance the per-site intrinsic activity. This work would provide valuable insights to regulate the electronic structure of superior electrocatalysts toward water splitting by constructing rare-earth compounds containing multiple heterointerfaces.

4.
Chem Commun (Camb) ; 58(55): 7682-7685, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730446

RESUMO

The addition of an extra metal source induces the transformation from crystalline α-Ni(OH)2 to an amorphous NiCoFeCrMo-based high-entropy hydroxide (HEH) and maximizes the high-valence Ni3+ content in HEH. For OER electrocatalysis, the quinary HEH possesses an overpotential of 292 mV at 10 mA cm-2, a Tafel slope of 54.31 mV dec-1 and the boosted intrinsic activity, surpassing other subsystems.

5.
Nanomaterials (Basel) ; 12(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432258

RESUMO

The oxygen evolution reaction (OER) is kinetically sluggish due to the limitation of the four-electron transfer pathway, so it is imperative to explore advanced catalysts with a superior structure and catalytic output under facile synthetic conditions. In the present work, an easily accessible strategy was proposed to implement the plant-polyphenol-involved coordination assembly on Co(OH)2 nanosheets. A TA-Fe (TA = tannic acid) coordination assembly growing on Co(OH)2 resulted in the heterostructure of Co(OH)2@TA-Fe as an electrocatalyst for OER. It could significantly decrease the overpotential to 297 mV at a current density of 10 mA cm-2. The heterostructure Co(OH)2@TA-Fe also possessed favorable reaction kinetics with a low Tafel slope of 64.8 mV dec-1 and facilitated a charge-transfer ability. The enhanced electrocatalytic performance was further unraveled to be related to the confined growth of the coordination assembly on Co(OH)2 to expose more active sites, the modulated surface properties and their synergistic effect. This study demonstrated a simple and feasible strategy to utilize inexpensive biomass-derived substances as novel modifiers to enhance the performance of energy-conversion electrocatalysis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35820021

RESUMO

The modulation of the electronic structure is the effective access to achieve highly active electrocatalysts for the hydrogen evolution reaction (HER). Transition-metal phosphide-based heterostructures are very promising in enhancing HER performance but the facile fabrication and an in-depth study of the catalytic mechanisms still remain a challenge. In this work, the catalytically inactive n-type CeOx is successfully combined with p-type CoP to form the CoP/CeOx heterojunction. The crystalline-amorphous CoP/CeOx heterojunction is fabricated by the phosphorization of predesigned Co(OH)2/CeOx via the as-developed reduction-hydrolysis strategy. The p-n CoP/CeOx heterojunction with a strong built-in potential of 1.38 V enables the regulation of the electronic structure of active CoP within the space-charge region to enhance its intrinsic activity and facilitate the electron transfer. The functional CeOx entity and the negatively charged CoP can promote the water dissociation and optimize H adsorption, synergistically boosting the electrocatalytic HER output. As expected, the heterostructured CoP/CeOx-20:1 with the optimal ratio of Co/Ce shows significantly improved HER activity and favorable kinetics (overpotential of 118 mV at a current density of 10 mA cm-2 and Tafel slope of 77.26 mV dec-1). The present study may provide new insight into the integration of crystalline and amorphous entities into the p-n heterojunction as a highly efficient electrocatalyst for energy storage and conversion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa