RESUMO
Carbon materials (CMs) hold immense potential for applications across a wide range of fields. However, current precursors often confront limitations such as low heteroatom content, poor solubility, or complicated preparation and post-treatment procedures. Our research has unveiled that protic ionic liquids and salts (PILs/PSs), generated from the neutralization of organic bases with protonic acids, can function as economical and versatile small-molecule carbon precursors. The resultant CMs display attractive features, including elevated carbon yield, heightened nitrogen content, improved graphitic structure, robust thermal stability against oxidation, and superior conductivity, even surpassing that of graphite. These properties can be elaborate modulated by varying the molecular structure of PILs/PSs. In this Personal Account, we summarize recent developments in PILs/PSs-derived CMs, with a particular focus on the correlations between precursor structure and the physicochemical properties of CMs. We aim to impart insights into the foreseeable controlled synthesis of advanced CMs.
RESUMO
BACKGROUND: Overhydrated hereditary stomatocytosis (OHSt) is a rare disorder characterized by abnormalities in erythrocytic volume homeostasis. Early and accurate diagnosis is essential for appropriate management and genetic counseling. METHODS: We present the case of a child with beta-thalassemia and a history of multiple blood transfusions. Clinical presentation, laboratory findings, and genetic testing were reviewed. Peripheral blood smear examination and genetic analysis were performed. RESULTS: The patient was admitted with severe anemia, and peripheral blood smear examination revealed the presence of up to 50% stomatocytes. Laboratory investigations showed abnormalities in red blood cell parameters, including decreased hemoglobin levels and increased mean corpuscular volume. Genetic testing identified a heterozygous mutation in the RHAG gene, confirming the diagnosis of OHSt. The presence of stomatocytes in the peripheral blood smear was transient, correlating with episodes of hemolysis and its control.
Assuntos
Anemia Hemolítica Congênita , Talassemia beta , Criança , Humanos , Talassemia beta/complicações , Talassemia beta/diagnóstico , Talassemia beta/genética , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Eritrócitos , Eritrócitos AnormaisRESUMO
Balancing the activation of H2 O is crucial for highly selective CO2 electroreduction (CO2 RR), as the protonation steps of CO2 RR require fast H2 O dissociation kinetics, while suppressing hydrogen evolution (HER) demands slow H2 O reduction. We herein proposed one molecular engineering strategy to regulate the H2 O activation using aprotic organic small molecules with high Gutmann donor number as a solvation shell regulator. These organic molecules occupy the first solvation shell of K+ and accumulate in the electrical double layer, decreasing the H2 O density at the interface and the relative content of proton suppliers (free and coordinated H2 O), suppressing the HER. The adsorbed H2 O was stabilized via the second sphere effect and its dissociation was promoted by weakening the O-H bond, which accelerates the subsequent *CO2 protonation kinetics and reduces the energy barrier. In the model electrolyte containing 5â M dimethyl sulfoxide (DMSO) as an additive (KCl-DMSO-5), the highest CO selectivity over Ag foil increased to 99.2 %, with FECO higher than 90.0 % within -0.75 to -1.15â V (vs. RHE). This molecular engineering strategy for cation solvation shell can be extended to other metal electrodes, such as Zn and Sn, and organic molecules like N,N-dimethylformamide.
RESUMO
RATIONALE: Green inclusions (GI) are distinct morphological features found in phagocytic cells like neutrophils and monocytes. These intracellular structures exhibit bright green color with unclear boundaries, and their origin and clinical significance are still not fully understood. GI carriers, often middle-aged to elderly with liver dysfunction, face higher mortality rates, earning them the nickname "inclusions of death." This report presents a rare GI-related pediatric case, demonstrating a favorable response to blood purification therapy. PATIENT CONCERNS: A 10-year-old girl was admitted with recurrent fever, abdominal pain, and neurological symptoms, culminating in a transient cardiac arrest. Blood tests revealed multi-organ injury and a high risk of disseminated intravascular coagulation, while peripheral blood smear detected GI within neutrophil cytoplasm. DIAGNOSIS: The patient was diagnosed with acute necrotizing encephalopathy, severe sepsis, and multiple organ failure. INTERVENTIONS AND OUTCOMES: After receiving multiple sessions of blood purification therapy, peripheral blood GI levels markedly decreased, accompanied by improvements in various laboratory parameters and signs of neurological recovery. Unfortunately, due to financial constraints, the family opted to transfer the patient back to their local hospital, where she succumbed shortly after discharge. LESSONS: This case underscores the complexities in managing GI-related pediatric cases. Moreover, it emphasizes the potential benefits of blood purification therapy in such scenarios. Notably, this study highlights a potential correlation between the level of GI in peripheral blood and disease severity, particularly in pediatric cases. While these findings hold clinical significance for the treatment and management of GI-related patients, further research focusing on middle-aged and elderly individuals is imperative to elucidate the fundamental relationship between peripheral blood GI quantity and clinical presentation and to evaluate the efficacy of blood purification in GI-related cases.
Assuntos
Líquidos Corporais , Traumatismo Múltiplo , Idoso , Feminino , Pessoa de Meia-Idade , Humanos , Criança , Corpos de Inclusão , Monócitos , Neutrófilos , Dor AbdominalRESUMO
BACKGROUND: Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), also known as Glutaric Aciduria Type II, is an exceptionally rare autosomal recessive genetic disorder that disrupts the metabolism of fatty acids, amino acids, and choline. It presents with a wide range of clinical manifestations, from severe neonatal-onset forms to milder late-onset cases, with symptoms including metabolic disturbances and muscle weakness. Jordan's anomaly is a distinctive morphological feature found in peripheral blood white cells and is typically associated with Neutral Lipid Storage Disease (NLSD). CASE REPORT: In our case report, the patient initially presented with symptoms of vomiting, abdominal pain, and altered consciousness. The presence of white cell Jordan's anomaly was detected in the blood smear. Subsequent serum tests revealed elevated levels of transaminases, creatine kinase, uric acid, and multiple acylcarnitines, while blood glucose and free carnitine levels were notably reduced. High-throughput sequencing confirmed heterozygous pathogenic variants in the electron-transferring flavoprotein dehydrogenase (ETFDH) gene, leading to the conclusive diagnosis of MADD. Following a three-month treatment regimen involving high-dose vitamin B2, coenzyme Q10, and other supportive interventions, the patient exhibited significant clinical improvement, ultimately resulting in discharge. CONCLUSION: The identification of Jordan's anomaly in a pediatric patient with late-onset MADD sheds light on its broader implications within the realm of lipid storage myopathies. The significance of this finding extends beyond its conventional association with NLSD, challenging the notion of its exclusivity. This novel observation serves as a compelling reminder of the diagnostic significance this morphological abnormality holds, potentially revolutionizing diagnostic practices within the field.
Assuntos
Eritrodermia Ictiosiforme Congênita , Erros Inatos do Metabolismo Lipídico , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Doenças Musculares , Recém-Nascido , Humanos , Criança , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Jordânia , Aminoácidos , Lipídeos , Mutação , Acil-CoA Desidrogenase/genéticaRESUMO
High-purity ethylene production from CO2 electroreduction (CO2RR) is a coveted, yet arduous feat because the product stream comprises a blend of unreacted CO2, H2, and other off-target CO2 reduction products. Here we present an indirect reduction strategy for CO2-to-ethylene conversion, one that employs 2-bromoethanol (Br-EO) as a mediator. Br-EO is initially generated from CO2RR and subsequently undergoes reduction to ethylene without the need for energy-intensive separation steps. The optimized AC-Ag/C catalyst with Cl incorporation reduces the energy barrier of the debromination step during Br-EO reduction, and accelerates the mass-transfer process, delivering a 4-fold decrease of the relaxation time constant. Resultantly, AC-Ag/C achieved a FEethylene of over 95.0 ± 0.36% at a low potential of -0.08 V versus reversible hydrogen electrode (RHE) in an H-type cell with 0.5 M KCl electrolyte, alongside a near 100% selectivity within the range of -0.38 to -0.58 V versus RHE. Through this indirect strategy, the average ethylene purity within 6-hour electrolysis was 98.00 ± 1.45 wt%, at -0.48 V (vs RHE) from the neutralized electrolyte after CO2 reduction over the Cu/Cu2O catalyst in a flow-cell.
RESUMO
Integrating anodic biomass valorization with carbon dioxide electroreduction (CO2RR) can produce value-added chemicals on both the cathode and anode; however, anodic oxidation still suffers from high overpotential. Herein, a photothermal-assisted method was developed to reduce the potential of 5-hydroxymethyl furfural (HMF) electrooxidation. Capitalizing on the copious oxygen vacancies, defective Co3O4 (D-Co3O4) exhibited a stronger photothermal effect, delivering a local temperature of 175.47 °C under near infrared light illumination. The photothermal assistance decreased the oxidation potential of HMF from 1.7â V over pristine Co3O4 to 1.37â V over D-Co3O4 to achieve a target current density of 30â mA cm-2, with 2,5-furandicarboxylic acid as the primary product. Mechanistic analysis disclosed that the photothermal effect did not change the HMF oxidation route but greatly enhanced the adsorption capacity of HMF. Meanwhile, faster electron transfer for direct HMF oxidation and the surface conversion to cobalt (oxy)hydroxide, which contributed to indirect HMF oxidation, was observed. Thus, rapid HMF conversion was realized, as evidenced by inâ situ surface-enhanced infrared spectroscopy. Upon coupling cathodic CO2RR with an atomically dispersed Ni-N/C catalyst, the Faradaic efficiencies of CO (cathode) and 2,5-furandicarboxylic acid (FDCA, anode) exceeded 90.0 % under a low cell potential of 1.77â V.
RESUMO
In this study, Co/Ni-NC catalyst with hetero-diatomic Co/Ni active sites dispersed on nitrogen-doped carbon matrix is synthesized via the controlled pyrolysis of ZIF-8 containing Co2+ and Ni2+ compounds. Experimental characterizations and theoretical calculations reveal that Co and Ni are atomically and uniformly dispersed in pairs of CoN4-NiN4 with an intersite distance ≈0.41 nm, and there is long-range d-d coupling between Co and Ni with more electron delocalization for higher bifunctional activity. Besides, the in situ grown carbon nanotubes at the edges of the catalyst particles allow high electronic conductivity for electrocatalysis process. Electrochemical evaluations demonstrate the superior ORR and OER bifunctionality of Co/Ni-NC catalyst with a narrow potential gap of only 0.691 V and long-term durability, significantly prevailing over the single-atom Co-NC and Ni-NC catalysts and the benchmark Pt/C and RuO2 catalysts. Co/Ni-NC catalyzed Zn-air batteries achieve a high specific capacity of 771 mAh g-1 and a long continuous operation period up to 340 h with a small voltage gap of ≈0.65 V, also much superior to Pt/C-RuO2.
RESUMO
Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-ß signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.
RESUMO
Abnormal proline-rich protein 11 (PRR11) expression is associated with various tumors. However, there are few reports concerning PRR11 with prognostic risk, immune infiltration, or immunotherapy of bladder urothelial carcinoma (BLCA). This study is based on online databases, such as Oncomine, GEPIA, HPA, LinkedOmics, TIMER, ESTIMATE and TISIDB, and BLCA data downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus, we employed an array of bioinformatics methods to explore the potential oncogenic roles of PRR11, including analyzing the relationship between PRR11 and prognosis, tumor mutational burden (TMB), microsatellite instability, and immune cell infiltration in BLCA. The results depict that PRR11 is highly expressed in BLCA, and BLCA patients with higher PRR11 expression have worse outcomes. In addition, there was a significant correlation between PRR11 expression and TMB and tumor immune infiltration. These findings suggest that PRR11 can be used as a potential marker for BLCA patient assessment and risk stratification to improve clinical prognosis, and its potential regulatory mechanism in the BLCA tumor microenvironment and targeted therapy is worthy of further investigation.
Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores , Prognóstico , Microambiente Tumoral/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genéticaRESUMO
Acute promyelocytic leukemia (APL) during pregnancy is rare and difficult to treat. To the best of our knowledge, there is little precedent for successful treatment with combined chemotherapeutic agents without affecting delivery. The present study reported the case of a 31-year-old woman pregnant with twins who presented to the antenatal service at 13-week gestational age with complaints of vaginal bleeding, lower abdominal pain, bleeding gums and skin ecchymosis, and was eventually diagnosed with APL. After treatment with all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO)-based induction regimen, the patient achieved a complete remission (CR) and delivered two healthy male infants at 34 weeks of gestation. The use of ATRA and ATO for the treatment of APL is controversial due to teratogenic effects and lethal retinoic acid syndrome. However, the patient demonstrated that the chemotherapy regimen with ATRA and ATO during the second and third trimesters can result in a sustainable remission and successful pregnancy outcome.
RESUMO
RATIONALE: Myeloid sarcoma (MS) involves the proliferation of extramedullary blasts from 1 or more myeloid lineages, replacing the original tissue structures, and these neoplasias are called granulocytic sarcoma, chloroma, or extramedullary myeloid neoplasms. These tumors develop in lymphoid organs, bones, skin, soft tissues, various mucous membranes, organs, and the central nervous system. MS is rare in non-leukemic patients, while MS patient with effusion as the first manifestation is even rare. PATIENT CONCERNS: We report the case of 44-year-old woman with abdominal pain, diarrhea, and vomiting. DIAGNOSIS: Ultrasound examination and computed tomography of the chest revealed large pericardial effusions and bilateral pleural effusions. Cytomorphological examination of the pericardial and pleural effusion, flow cytometry, and immunohistochemical markers suggested myeloid tumor cells. However, concurrent peripheral blood and bone marrow examinations showed no evidence of acute myeloid leukemia. The patient was eventually diagnosed with isolated MS. INTERVENTIONS AND OUTCOMES: After chemotherapy with pirarubicinâ +â cytarabine and high-dose cytarabineâ +â etoposide, the pericardial effusion and pleural effusion were absorbed, and the mediastinal mass significantly shrunk. One year after patient gave up treatment, acute myeloid leukemia (AML) was confirmed by bone marrow examinations. CONCLUSION: The early manifestations of the patient lacked specificity and were highly susceptible to misdiagnosis. Cytomorphology and flow cytology indicated important directions for the diagnosis of the disease in the early stage. Administration of chemotherapy regimen containing cytarabine could prolong disease-free survival and time before progress to AML.
Assuntos
Leucemia Mieloide Aguda , Derrame Pleural , Sarcoma Mieloide , Feminino , Humanos , Adulto , Sarcoma Mieloide/complicações , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/tratamento farmacológico , Etoposídeo/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Derrame Pleural/etiologia , Derrame Pleural/patologia , Citarabina/uso terapêuticoRESUMO
Carbon-based matrix is known to exert a profound influence on the stability and activity of a supported molecular catalyst for electrochemical CO2 reduction reaction (eCO2RR), while regulating the interfacial π-π interaction by designing functional species on the carbon matrix has seldom been explored. Herein, promoted π electron transfer between a graphene substrate and cobalt phthalocyanine (CoPc) is achieved by introducing abundant intrinsic defects into graphene (DrGO), which not only generates more electrochemically active Co sites and leads to a positive shift of the Co2+/Co+ reduction potential but also enhances the CO2 chemical adsorption. Consequently, as compared to the defect-free counterpart rGO-CoPc, DrGO-CoPc could yield CO with a Faradaic efficiency (FECO) higher than 85% in a wide potential range from -0.53 to -0.88 V, and the largest FECO and partial CO current density (JCO) achieve 90.2% and 73.9 mA cm-2, respectively. More importantly, both FECO and JCO can be dramatically improved when conducting eCO2RR in an ionic liquid-based electrolyte, for which FECO is higher than 90.0% in a wide potential range of 600 mV, with the peak JCO of up to 113.6 mA cm-2 in an H-type cell. The excellent eCO2RR performance of DrGO-CoPc rates itself as one of the best immobilized molecular catalysts.
RESUMO
Manipulating the in-plane defects of metal-nitrogen-carbon catalysts to regulate the electroreduction reaction of CO2 (CO2 RR) remains a challenging task. Here, it is demonstrated that the activity of the intrinsic carbon defects can be dramatically improved through coupling with single-atom Fe-N4 sites. The resulting catalyst delivers a maximum CO Faradaic efficiency of 90% and a CO partial current density of 33 mA cm-2 in 0.1 m KHCO3. The remarkable enhancements are maintained in concentrated electrolyte, endowing a rechargeable Zn-CO2 battery with a high CO selectivity of 86.5% at 5 mA cm-2 . Further analysis suggests that the intrinsic defect is the active sites for CO2 RR, instead of the Fe-N4 center. Density functional theory calculations reveal that the Fe-N4 coupled intrinsic defect exhibits a reduced energy barrier for CO2 RR and suppresses the hydrogen evolution activity. The high intrinsic activity, coupled with fast electron-transfer capability and abundant exposed active sites, induces excellent electrocatalytic performance.
RESUMO
Carbon-based electrocatalysts with single metal sites hold great potential for mechanism exploration via mimicking molecular catalysts, due to their distinct catalytic sites. In addition to metal atoms, the neighboring nonmetal heteroatoms such as N, S, and O atoms, which are widely detected in carbon-based single-atom catalysts, may also contribute to enhancing the electrochemical activity of single-metal centers. In this work, the boosting effect of O-doping toward the electrochemical oxygen reduction reaction (ORR) was evaluated by both experimental studies and DFT calculations. O-doped carbon-supported single-Fe-site catalysts possessing deep mesopores and desirable hydrophilic surface were achieved by confined carbonization in an inert or reductive atmosphere (SAFe-NDC and SAFe-NDC-H). As compared to the state-of-the-art Pt/C, these catalysts showed superior catalytic activity toward the ORR in terms of half-wave potential, Tafel slope, and long-term stability. In particular, SAFe-NDC-H outperformed its SAFe-NDC counterpart. Considering that these two catalysts possess a comparable porous structure, surface properties, and local electronic structure of a single Fe site, the dopant nonmetal O atoms, specifically, carbonyl group (CâO), are revealed to affect the ORR activity of the single Fe site exclusively. The introduced CâO facilitates the formation of *OOH as well as the reduction of *OH, thereby reducing the catalysts' overpotential.
RESUMO
Considering the significant influence of oxygen-containing groups on the surface of carbon involved electrodes, a carbon nanotube (CNT)-based MnO2 composite catalyst was synthesized following a facile method while using polymerized ionic liquids (PIL) as sacrifice agent. Herein, the PIL (polymerized hydrophobic 1-vinyl-3-ethylimidazolium bis ((trifluoromethyl)sulfonyl)imide) wrapped CNTs were prepared. The composite was applied to support MnO2 by the treatment of KMnO4 solution, taking advantage of the reaction between PIL and KMnO4, which excludes or suppresses the oxidation of CNTs, and the as-synthesized material with fewer oxygen-containing groups acted as a cathode catalyst for Li-O2 batteries, directly avoiding the application of binders. The catalyst shows enhanced activity compared to that of the samples without PIL, as verified by the lower overpotential during discharging and charging (0.97 V at the current density of 100 mA g-1). Meanwhile, the performance parameters such as Coulombic efficiency and rate capability were also improved for the Li-O2 battery utilizing this catalyst. Further, the formation of confined Li2O2 particles could be responsible for the reduction of charge potential of Li-O2 batteries due to the synergy effect of the intrinsic catalytic activity of MnO2 and fewer oxygen functional groups on the catalyst surface.