Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(6): 3238-3249, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30768244

RESUMO

Flow-through configuration for electrochemical disinfection is considered as a promising approach to minimize the formation of toxic byproducts and energy consumption via the enhanced convective mass transport as compared with conventional flow-by one. Under this hydrodynamic condition, it is essential to ascertain the effect of sequential electro-redox processes with the cathode/anode then anode/cathode arrangements on disinfection performance. Here, carbon fiber felt (CFF) was utilized to construct two flow-through electrode systems (FESs) with sequential reduction-oxidation (cathode-anode) or oxidation-reduction (anode-cathode) processes to systematically compare their disinfection performance toward a model Escherichia coli ( E. coli) pathogen. In-situ sampling and live/dead backlight staining experiments revealed that E. coli inactivation mainly occurred on anode via an adsorption-inactivation-desorption process. In reduction-oxidation system, after the cathode-pretreatment, bulk solution pH increased significantly, leading to the negative charge of E. coli cells. Hence, E. coli cells were adsorbed and inactivated easily on the subsequent anode, finally resulting in its much better disinfection performance and energy efficiency than the oxidation-reduction system. Application of 3.0 V resulted in ∼6.5 log E. coli removal at 1500 L m-2 h-1 (50 mL min-1), suggesting that portable devices can be designed from CFF-based FES with potential application for point-of-use water disinfection.


Assuntos
Desinfecção , Água , Fibra de Carbono , Técnicas Eletroquímicas , Eletrodos , Escherichia coli , Oxirredução
2.
Open Med (Wars) ; 18(1): 20230850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025537

RESUMO

To investigate the effect of adipose-derived stem cells (ASCs) transplantation on radiation-induced lung injury (RILI), Sprague-Dawley rats were divided into phosphate-buffered saline (PBS) group, ASCs group, Radiation + PBS group, and Radiation + ASCs group. Radiation + PBS and Radiation + ASCs groups received single dose of 30 Gy X-ray radiation to the right chest. The Radiation + PBS group received 1 mL PBS suspension and Radiation + ASCs group received 1 mL PBS suspension containing 1 × 107 CM-Dil-labeled ASCs. The right lung tissue was collected on Days 30, 90, and 180 after radiation. Hematoxylin-eosin and Masson staining were performed to observe the pathological changes and collagen fiber content in the lung tissue. Immunohistochemistry (IHC) and western blot (WB) were used to detect levels of fibrotic markers collagen I (Collal), fibronectin (FN), as well as transforming growth factor-ß1 (TGF-ß1), p-Smad 3, and Smad 3. Compared with the non-radiation groups, the radiation groups showed lymphocyte infiltration on Day 30 after irradiation and thickened incomplete alveolar walls, collagen deposition, and fibroplasia on Days 90 and 180. ASCs relieved these changes on Day 180 (Masson staining, P = 0.0022). Compared with Radiation + PBS group, on Day 180 after irradiation, the Radiation + ASCs group showed that ASCs could significantly decrease the expressions of fibrosis markers Collal (IHC: P = 0.0022; WB: P = 0.0087) and FN (IHC: P = 0.0152; WB: P = 0.026) and inhibit the expressions of TGF-ß1 (IHC: P = 0.026; WB: P = 0.0152) and p-Smad 3 (IHC: P = 0.0043; WB: P = 0.0087) in radiation-induced injured lung tissue. These indicated that ASCs could relieve RILI by inhibiting TGF-ß1/Smad 3 signaling pathway.

3.
J Hazard Mater ; 410: 124602, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33234394

RESUMO

Chlorine disinfection is a common technology to control biofouling in the pretreatment of the reverse osmosis (RO) system for wastewater reclamation. However, chlorine disinfection could even aggravate the RO membrane biofouling because of the changes of microbial community structure. In this study, the mechanism of biofilm formation and EPS secretion after chlorine disinfection was investigated by analyzing the genes coding quorum sensing, exopolysaccharide biosynthesis, and amino acid biosynthesis. After 1, 5, and 15 mg-Cl2/L chlorine disinfection, the relative abundances of the functional genes all increased significantly. Compared with the control group, chlorine-resistant bacteria (Acidovorax, Arenimonas, and Pseudomonas) also harbored higher relative abundances of these functional genes. The high relative abundances of these genes might provide the bacterial community after chlorine disinfection with high potential of biofilm formation and EPS secretion and then cause severe RO membrane biofouling. In the sample with 5 mg-Cl2/L chlorine disinfection, the correlation coefficients (r) between each two of the three kinds of functional genes were more than 0.9 and much stronger than that in the control group. These results indicated that the bacterial community selected by chlorine disinfection could build more stable biofilm to resist chlorine but also could cause more severe RO membrane biofouling.


Assuntos
Incrustação Biológica , Purificação da Água , Biofilmes , Incrustação Biológica/prevenção & controle , Cloro , Desinfecção , Membranas Artificiais , Metagenômica , Osmose
4.
Water Res ; 204: 117606, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500181

RESUMO

The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.


Assuntos
COVID-19 , Microbiota , Bactérias , Desinfecção , Humanos , SARS-CoV-2
5.
Mol Med Rep ; 22(5): 3904-3910, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901870

RESUMO

Magnesium, an important inorganic mineral component in bones, enhances osteoblast adhesion and osteogenic gene expression. Mg2+­containing hydroxyapatite promotes mouse mesenchymal stem cell (MMSC) osteogenic differentiation. In the present study, MMSCs were cultured in media containing different concentrations of MgCl2 (0 and 20 mM) for different time periods. Western blotting and reverse transcription­quantitative PCR were performed to determine the expression levels of phosphorylated (p)­p38 mitogen­activated protein kinase (MAPK), the osteoblast­specific transcription factor Osterix (Osx), runt­related transcription factor 2 (Runx2), and p38 downstream genes, such as 27 kDa heat shock protein (hsp27), activating transcription factor 4 (Atf4), myocyte enhancer factor 2C (Mef2c) and CCAAT/enhancer­binding protein homologous protein (Ddit3). The facilitatory effect of MgCl2 on MMSC osteogenic differentiation was assessed via Alizarin Red staining. The results suggested that MgCl2 increased p38 phosphorylation compared with the control group. Downstream genes of the p38 signaling pathway, including Osx and Runx2, as well as several osteogenesis­associated downstream target genes, including Hsp27, Atf4, Ddit3 and Mef2c, were significantly upregulated in the Mg2+­treated group compared with the control group. The increased osteogenic differentiation in the Mg2+­treated group was significantly attenuated in MMSCs treated with SB203580, a specific inhibitor of the p38 signaling pathway. The results suggested that appropriate concentrations of MgCl2 promoted MMSC osteogenic differentiation via regulation of the p38/Osx/Runx2 signaling pathway.


Assuntos
Cloreto de Magnésio/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
ACS Appl Mater Interfaces ; 12(50): 55710-55722, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33263993

RESUMO

Hydroxyapatite (HA) coatings directly deposited by hydrothermal electrochemical technology (HET) onto carbon/carbon (C/C) composites exhibited a catastrophic failure occurring at the interface of the HA and C/C. To overcome this problem, a polyvinyl alcohol (PVA)/graphene oxide (GO) interlayer (P/G interlayer) was applied on the (NH4)2S2O8-pretreated C/C substrate (named P/G-C/C) by using a dipping method. Subsequently, a calcium phosphate coating was deposited on P/G-C/C, shortened as M-P/G-C/C, by HET, and then converted into HA coating (abbreviated as HA-P/G-C/C) through posthydrothermal treatment. For comparison, HA coating was prepared onto C/C without a P/G interlayer through the same process, which was denoted as HA-C/C. The composition, microstructure, and morphology of the samples were characterized by X-ray diffractometry (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), Raman spectra, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The adhesive performance of the coatings on C/C was measured by a scratch test. Finally, an in vitro bioactivity of the coatings was evaluated in a simulated body fluid solution at 37 °C. Results showed no apparent differences in the morphology and phase of the posttreated coatings, both of which are composed of a dense structure containing needle-like HA crystals. However, the HA-P/G-C/C sample possessed a higher Ca/P ratio and denser interface, thereby exhibiting higher adhesive performance and better bioactivity. The adhesive strength of the HA-P/G coating was observed at a critical load of 41.04 N, which increased by 29.3% relative to the HA coating. Moreover, the failure site was on the HA-P/G coating rather than at the interface. The enhanced adhesive performance was ascribed to the PVA/GO-repairing pits on C/C and PVA and GO toughening effects on the HA coating. In vitro and in vivo tests revealed no statistical significance for the two HA-coated C/C samples, although the HA-P/G coating exhibited better bioactivity, inducing the growth of bonelike apatite than the HA coating.


Assuntos
Carbono/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Grafite/química , Álcool de Polivinil/química , Animais , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Galvanoplastia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
7.
J Hazard Mater ; 399: 123065, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540707

RESUMO

The stackable carbon fiber-based flow-through systems (m(nC + 1A)) were constructed, where the multi-cathode units (nC + 1A) were equipped with multiple cathodes (nC) and a counter anode (1A), and the m was the stackable numbers of the nC + 1A units. The configuration of the m(nC + 1A) systems with m and n values from 1 to 6 was optimized by comparing their disinfection performance toward a model pathogen (Escherichia coli) from the aspects of disinfection ability, energy consumption and HRT. For multi-cathode units (nC + 1A), increasing the cathode numbers (n) promoted the E. coli inactivation by the predominant direct oxidation on the anode. Among the stackable m(nC + 1A) modules, the 3(3C + 1A) module was recommended as the best configuration. In the stackable 3(3C + 1A) module with consecutive reduction-oxidation processes, the E. coli inactivation mechanisms were attributed to the direct oxidation on the anodes and H2O2-induced indirect oxidation on the cathodes. The synergistic effect between the stackable 3C + 1A units promoted the electro-redox of the electrodes and their disinfection ability, which was also accompanied by the enhancement of energy consumption for O2/H2O2 mutual transformation on the electrodes. In turn, the modules with excessive stackable unit numbers (m > 3) over-promoted the competitive reaction of O2/H2O2 mutual transformation, restraining the disinfection performance.

8.
Water Res ; 168: 115150, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606556

RESUMO

The disinfection performance of a flow-through electrode system (FES) was systematically evaluated using different carbonized (C1, C2, and C3) and corresponding graphitized (G1, G2, and G3) carbon fiber felt (CFF) electrodes. The physicochemical and electrochemical properties were characterized to identify the differences among CFFs. Graphitized CFFs (gCFFs) can achieve complete inactivation of Escherichia coli (>6 log) at the voltage of 3 V and flux of 120-3600 L/(m2 h) for high conductivity and chemical stability, while carbonized CFFs (cCFFs) only achieved around 1 log removal with obvious carbon corrosion. For the gCFFs, G1 (>6 log removal) with higher conductivity, better graphite structure, and larger surface area (related to fiber diameter and density) presented better disinfection performance at the flow rate of 30 mL/min than G2 (∼3 log) and G3(∼1 log). Furthermore, no regrowth and reactivation of bacteria occurred during the storage under visible light illumination after FES treatment. Three parallel FESs with G1 were operated continuously for one week (24 h per day, 7 days) treating the solution with an E. coli concentration ranging from 106 to 107 CFU/mL at the applied voltage of 3 V and the flow rate of 20 mL/min. No live bacteria were detected in the effluent of any of these three FESs. In-situ sampling experiments demonstrated that the inactivation of bacteria on anode was the dominant mechanism for FES treatment, which can be attributed to the sequential adsorption, direct-oxidation and desorption process on anode, instead of indirect oxidation by generating chemical oxidants. In addition, hydroxide ion generated from cathode reaction enhanced anode adsorption and inactivation of bacteria by providing alkaline environment. Combining the analysis results of material properties and disinfection performance, the gCFF-based FES was suggested to be a low-cost, high-efficiency, and safe alternative for future water disinfection.


Assuntos
Fibra de Carbono , Purificação da Água , Desinfecção , Eletrodos , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa