Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 31(1): 13-21, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29155576

RESUMO

Chronic arsenic exposure during development is associated with alterations of chemical transmission and demyelination, which result in cognitive deficits and peripheral neuropathies. At the cellular level, arsenic toxicity involves increased generation of reactive species that induce severe cellular alterations such as DNA fragmentation, apoptosis, and lipid peroxidation. It has been proposed that arsenic-associated neurodegeneration could evolve to Alzheimer disease in later life.1,2 In this study, the effects of chronic exposure to inorganic arsenic (3 ppm by drinking water) in Wistar rats on the production and elimination of Amyloid-ß (Aß) were evaluated. Male Wistar rats were exposed to 3 ppm of arsenic in drinking water from fetal development until 4 months of age. After behavioral deficits induced by arsenic exposure through contextual fear conditioning were verified, the brains were collected for the determination of total arsenic by inductively coupled plasma-mass spectrometry, the levels of amyloid precursor protein and receptor for advanced glycation end products (RAGE) by Western blot analysis as well as their transcript levels by RT-qPCR, Aß(1-42) estimation by ELISA assay and the enzymatic activity of ß-secretase (BACE1). Our results demonstrate that chronic arsenic exposure induces behavioral deficits accompanied of higher levels of soluble and membranal RAGE and the increase of Aß(1-42) cleaved. In addition, BACE1 enzymatic activity was increased, while immunoblot assays showed no differences in the low-density lipoprotein receptor-related protein 1 (LRP1) receptor among groups. These results provide evidence of the effects of arsenic exposure on the production of Aß(1-42) and cerebral amyloid clearance through RAGE in an in vivo model that displays behavioral alterations. This work supports the hypothesis that early exposure to metals may contribute to neurodegeneration associated with amyloid accumulation.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Arsênio/administração & dosagem , Arsênio/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fragmentos de Peptídeos/biossíntese , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
2.
ACS Chem Neurosci ; 10(1): 323-336, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30141907

RESUMO

Worldwide, every year there is an increase in the number of people exposed to inorganic arsenic (iAs) via drinking water. Human populations present impaired cognitive function as a result of prenatal and childhood iAs exposure, while studies in animal models demonstrate neurobehavioral deficits accompanied by neurotransmitter, protein, and enzyme alterations. Similar impairments have been observed in close association with Alzheimer's disease (AD). In order to determine whether iAs promotes the pathophysiological progress of AD, we used the 3xTgAD mouse model. Mice were exposed to iAs in drinking water from gestation until 6 months (As-3xTgAD group) and compared with control animals without arsenic (3xTgAD group). We investigated the behavior phenotype on a test battery (circadian rhythm, locomotor behavior, Morris water maze, and contextual fear conditioning). Adenosine triphosphate (ATP), reactive oxygen species, lipid peroxidation, and respiration rates of mitochondria were evaluated, antioxidant components were detected by immunoblots, and immunohistochemical studies were performed to reveal AD markers. As-3xTgAD displayed alterations in their circadian rhythm and exhibited longer freezing time and escape latencies compared to the control group. The bioenergetic profile revealed decreased ATP levels accompanied by the decline of complex I, and an oxidant state in the hippocampus. On the other hand, the cortex showed no changes of oxidant stress and complex I; however, the antioxidant response was increased. Higher immunopositivity to amyloid isoforms and to phosphorylated tau was observed in frontal cortex and hippocampus of exposed animals. In conclusion, mitochondrial dysfunction may be one of the triggering factors through which chronic iAs exposure exacerbates brain AD-like pathology.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Arsênio/toxicidade , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa