Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Biol ; 11(8): e1001640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013648

RESUMO

Caveolae are an abundant feature of the plasma membrane of many mammalian cell types, and have key roles in mechano-transduction, metabolic regulation, and vascular permeability. Caveolin and cavin proteins, as well as EHD2 and pacsin 2, are all present in caveolae. How these proteins assemble to form a protein interaction network for caveolar morphogenesis is not known. Using in vivo crosslinking, velocity gradient centrifugation, immuno-isolation, and tandem mass spectrometry, we determine that cavins and caveolins assemble into a homogenous 80S complex, which we term the caveolar coat complex. There are no further abundant components within this complex, and the complex excludes EHD2 and pacsin 2. Cavin 1 forms trimers and interacts with caveolin 1 with a molar ratio of about 1∶4. Cavins 2 and 3 compete for binding sites within the overall coat complex, and form distinct subcomplexes with cavin 1. The core interactions between caveolin 1 and cavin 1 are independent of cavin 2, cavin 3, and EHD2 expression, and the cavins themselves can still interact in the absence of caveolin 1. Using immuno-electron microscopy as well as a recently developed protein tag for electron microscopy (MiniSOG), we demonstrate that caveolar coat complexes form a distinct coat all around the caveolar bulb. In contrast, and consistent with our biochemical data, EHD2 defines a different domain at the caveolar neck. 3D electron tomograms of the caveolar coat, labeled using cavin-MiniSOG, show that the caveolar coat is composed of repeating units of a unitary caveolar coat complex.


Assuntos
Cavéolas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica
2.
Basic Res Cardiol ; 109(6): 439, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25204797

RESUMO

Endothelial cells are important elements in the vascular response to danger-associated molecules signaling through toll-like receptors (TLRs). Flotillin-1 and -2 are markers of membrane rafts but their true endothelial function is unknown. We hypothesized that flotillins are required for TLR signaling in human umbilical vein endothelial cells (HUVECs). Knockdown of flotillin-1 by shRNA decreased the TLR3-mediated poly-I:C-induced but not the TLR4-mediated LPS-induced inflammatory activation of HUVEC. As TLR3 but not TLR4 signals through the endosomal compartment, flotillin-1 might be involved in the transport of poly-I:C to its receptor. Consistently, uptake of poly-I:C was attenuated by flotillin-1 knockdown and probably involved the scavenger receptor SCARA4 as revealed by knockdown of this receptor. To determine the underlying mechanism, SILAC proteomics was performed. Down-regulation of flotillin-1 led to a reduction of the structural caveolae proteins caveolin-1, cavin-1 and -2, suggesting a role of flotillin-1 in caveolae formation. Flotillin-1 and caveolin-1 colocalized within the cell, and knockdown of flotillin-1 decreased caveolin-1 expression in an endoplasmic reticulum stress-dependent manner. Importantly, downregulation of caveolin-1 also attenuated TLR3-induced signaling. To demonstrate the importance of this finding, cell adhesion was studied. Flotillin-1 shRNA attenuated the poly-I:C-mediated induction of the adhesion molecules VCAM-1 and ICAM-1. As a consequence, the poly-I:C-induced adhesion of peripheral blood mononuclear cells onto HUVECs was significantly attenuated by flotillin-1 shRNA. Collectively, these data suggest that interaction between flotillin-1 and caveolin-1 may facilitate the transport of TLR3-ligands to its intracellular receptor and enables inflammatory TLR3 signaling.


Assuntos
Células Endoteliais/fisiologia , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/fisiologia , Humanos
3.
J Cell Sci ; 124(Pt 23): 3933-40, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22194304

RESUMO

Flotillins are membrane proteins that form microdomains in the plasma membrane of all mammalian cell types studied to date. They span the evolutionary spectrum, with proteins related to flotillins present in bacteria, fungi, plants and metazoans, which suggests that they perform important, and probably conserved, functions. Flotillins have been implicated in myriad processes that include endocytosis, signal transduction and regulation of the cortical cytoskeleton, yet the molecular mechanisms that underlie flotillin function in these different cases are still poorly understood. In this Commentary, we will provide an introduction to these intriguing proteins, summarise their proposed functions and discuss in greater detail some recent insights into the role of flotillin microdomains in endocytosis that have been provided by several independent studies. Finally, we will focus on the questions that are raised by these new experiments and their implications for future studies.


Assuntos
Endocitose , Proteínas de Membrana/química , Transdução de Sinais , Animais , Membrana Celular/química , Citoesqueleto/química , Dinaminas/química , Proteínas Ligadas por GPI/química , Humanos , Microdomínios da Membrana/química , Receptores de Superfície Celular/química , Solubilidade
4.
J Cell Sci ; 124(Pt 16): 2777-85, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807942

RESUMO

The pacsin (also termed syndapin) protein family is well characterised structurally. They contain F-BAR domains associated with the generation or maintenance of membrane curvature. The cell biology of these proteins remains less understood. Here, we initially confirm that EHD2, a protein previously shown biochemically to be present in caveolar fractions and to bind to pacsins, is a caveolar protein. We go on to report that GFP-pacsin 2 can be recruited to caveolae, and that endogenous pacsin 2 partially colocalises with caveolin 1 at the plasma membrane. Analysis of the role of pacsin 2 in caveolar biogenesis using small interfering RNA (siRNA) reveals that loss of pacsin 2 function results in loss of morphologically defined caveolae and accumulation of caveolin proteins within the plasma membrane. Overexpression of the F-BAR domain of pacsin 2 (but not the related F-BAR domains of CIP4 and FBP17) disrupts caveolar morphogenesis or trafficking, implying that pacsin 2 interacts with components required for these processes. We propose that pacsin 2 has an important role in the formation of plasma membrane caveolae.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Cavéolas/fisiologia , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Fibroblastos/fisiologia , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cavéolas/ultraestrutura , Membrana Celular/ultraestrutura , Clonagem Molecular , Proteínas do Citoesqueleto , Fibroblastos/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica , Células NIH 3T3 , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Proteínas/genética , RNA Interferente Pequeno/genética , Transgenes/genética
5.
Nat Cell Biol ; 8(1): 46-54, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16341206

RESUMO

Previous studies provide evidence for an endocytic mechanism in mammalian cells that is distinct from both clathrin-coated pits and caveolae, and is not inhibited by overexpression of GTPase-null dynamin mutants. This mechanism, however, has been defined largely in these negative terms. We applied a ferro-fluid-based purification of endosomes to identify endosomal proteins. One of the proteins identified in this way was flotillin-1 (also called reggie-2). Here, we show that flotillin-1 resides in punctate structures within the plasma membrane and in a specific population of endocytic intermediates. These intermediates accumulate both glycosylphosphatidylinositol (GPI)-linked proteins and cholera toxin B subunit. Endocytosis in flotillin-1-containing intermediates is clathrin-independent. Total internal reflection microscopy and immuno-electron microscopy revealed that flotillin-1-containing regions of the plasma membrane seem to bud into the cell, and are distinct from clathrin-coated pits and caveolin-1-positive caveolae. Flotillin-1 small interfering RNA (siRNA) inhibited both clathrin-independent uptake of cholera toxin and endocytosis of a GPI-linked protein. We propose that flotillin-1 is one determinant of a clathrin-independent endocytic pathway in mammalian cells.


Assuntos
Endocitose , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células COS , Caveolinas/metabolismo , Chlorocebus aethiops , Toxina da Cólera/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Fosfatos de Inositol/metabolismo , Microdomínios da Membrana/metabolismo , Transporte Proteico , Interferência de RNA , Transfecção , Transferrina/metabolismo
6.
Cell Rep Med ; 3(1): 100497, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106509

RESUMO

The blood-brain barrier (BBB) restricts clinically relevant accumulation of many therapeutics in the CNS. Low-dose methamphetamine (METH) induces fluid-phase transcytosis across BBB endothelial cells in vitro and could be used to enhance CNS drug delivery. Here, we show that low-dose METH induces significant BBB leakage in rodents ex vivo and in vivo. Notably, METH leaves tight junctions intact and induces transient leakage via caveolar transport, which is suppressed at 4°C and in caveolin-1 (CAV1) knockout mice. METH enhances brain penetration of both small therapeutic molecules, such as doxorubicin (DOX), and large proteins. Lastly, METH improves the therapeutic efficacy of DOX in a mouse model of glioblastoma, as measured by a 25% increase in median survival time and a significant reduction in satellite lesions. Collectively, our data indicate that caveolar transport at the adult BBB is agonist inducible and that METH can enhance drug delivery to the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Cavéolas/metabolismo , Metanfetamina/farmacologia , Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/ultraestrutura , Cavéolas/efeitos dos fármacos , Cavéolas/ultraestrutura , Doxorrubicina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Glioma/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Wistar
7.
Nat Cell Biol ; 4(5): 374-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11951093

RESUMO

Mammalian cells endocytose a variety of proteins and lipids without utilising clathrin-coated pits. Detailed molecular mechanisms for clathrin-independent endocytosis are unclear. Several markers for this process, including glycosphingolipid-binding bacterial toxin subunits such as cholera toxin B subunit (CTxB), and glycosyl-phosphatidyl-inositol (GPI)-anchored proteins, are found in detergent-resistant membrane fractions (DRMs), or 'lipid rafts'. The Golgi complex constitutes one principal intracellular destination for these markers. Uptake of both CTxB and GPI-anchored proteins may involve caveolae, small invaginations in the plasma membrane (PM). However, the identity of intermediate organelles involved in PM to Golgi trafficking, as well as the function of caveolins, defining protein components of caveolae, are unclear. This paper shows that molecules which partition into DRMs and are endocytosed in a clathrin-independent fashion, accumulate in a discrete population of endosomes en route to the Golgi complex. These endosomes are devoid of markers for classical early and recycling endosomes, but do contain caveolin-1. Caveolin-1-positive endosomes are sites for the sorting of caveolin-1 away from Golgi-bound cargoes, although caveolin-1 itself is unlikely to have a direct function in PM to Golgi transport.


Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Animais , Caveolina 1 , Caveolinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Toxina da Cólera/metabolismo , Endossomos/química , Glicosilfosfatidilinositóis/metabolismo , Humanos , Imuno-Histoquímica , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/metabolismo
8.
Nat Cell Biol ; 6(3): 238-43, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14767481

RESUMO

The extent to which lipid raft proteins are organized in functional clusters within the plasma membrane is central to the debate on structure and function of rafts. Glycosylphosphatidylinositol (GPI)-linked proteins are characteristic components of biochemically defined rafts. Several studies report a function for rafts in T-cell stimulation, but it is unclear whether molecules involved in T-cell receptor (TCR) signalling are recruited to (or excluded from) T-cell synapses through asymmetric distribution of raft microdomains or through specific protein-protein interactions. Here we used FRET analysis in live cells to determine whether GPI-linked proteins are clustered in the plasma membrane of unstimulated cells, and at regions where TCR signalling has been activated using antibody-coated beads. Multiple criteria suggested that FRET between different GPI-linked fluorescent proteins in COS-7 or unstimulated Jurkat T-cells is generated by a random, un-clustered distribution. Stimulation of TCR signalling in Jurkat cells resulted in localized increases in fluorescence of GPI-linked fluorescent proteins and cholera toxin B-subunit (CTB). However, measurements of FRET and ratio imaging showed that there was no detectable clustering and no overall enrichment of GPI-linked proteins or CTB in these regions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Glicosilfosfatidilinositóis/metabolismo , Ativação Linfocitária/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Células COS , Toxina da Cólera , Corantes Fluorescentes , Humanos , Células Jurkat , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
9.
Curr Biol ; 17(5): 462-7, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17331726

RESUMO

The rate of lateral diffusion of proteins over micron-scale distances in the plasma membrane (PM) of mammalian cells is much slower than in artificial membranes [1, 2]. Different models have been advanced to account for this discrepancy. They invoke either effects on the apparent viscosity of cell membranes through, for example, protein crowding [3, 4], or a role for cortical factors such as actin or spectrin filaments [1]. Here, we use photobleaching to test specific predictions of these models [5]. Neither loss of detectable cortical actin nor knockdown of spectrin expression has any effect on diffusion. Disruption of the PM by formation of ventral membrane sheets or permeabilization induces aggregation of membrane proteins, with a concomitant increase in rates of diffusion for the nonaggregated fraction. In addition, procedures that directly increase or decrease the total protein content of the PM in live cells cause reciprocal changes in lateral diffusion rates. Our data imply that slow diffusion over micron-scale distances is an intrinsic property of the membrane itself and that the density of proteins within the membrane is a significant parameter in determining rates of lateral diffusion.


Assuntos
Membrana Celular/fisiologia , Difusão , Proteínas de Membrana/fisiologia , Actinas , Animais , Células COS , Linhagem Celular , Permeabilidade da Membrana Celular , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Camundongos , Espectrina
10.
Curr Biol ; 17(13): 1151-6, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17600709

RESUMO

Endocytosis has a crucial role in many cellular processes. The best-characterized mechanism for endocytosis involves clathrin-coated pits [1], but evidence has accumulated for additional endocytic pathways in mammalian cells [2]. One such pathway involves caveolae, plasma-membrane invaginations defined by caveolin proteins. Plasma-membrane microdomains referred to as lipid rafts have also been associated with clathrin-independent endocytosis by biochemical and pharmacological criteria [3]. The mechanisms, however, of nonclathrin, noncaveolin endocytosis are not clear [4, 5]. Here we show that coassembly of two similar membrane proteins, flotillin1 and flotillin2 [6-8], is sufficient to generate de novo membrane microdomains with some of the predicted properties of lipid rafts [9]. These microdomains are distinct from caveolin1-positive caveolae, are dynamic, and bud into the cell. Coassembly of flotillin1 and flotillin2 into microdomains induces membrane curvature, the formation of plasma-membrane invaginations morphologically similar to caveolae, and the accumulation of intracellular vesicles. We propose that flotillin proteins are defining structural components of the machinery that mediates a clathrin-independent endocytic pathway. Key attributes of this machinery are the dependence on coassembly of both flotillins and the inference that flotillin microdomains can exist in either flat or invaginated states.


Assuntos
Endocitose/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Expressão Gênica , Células HeLa , Humanos , Microdomínios da Membrana/ultraestrutura , Vesículas Transportadoras/ultraestrutura
11.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964732

RESUMO

Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.


Assuntos
Caveolina 1/metabolismo , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Listeriose/microbiologia , Animais , Biomarcadores , Linhagem Celular , Imunofluorescência , Humanos
12.
J Cell Biol ; 165(5): 735-46, 2004 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15173190

RESUMO

Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.


Assuntos
Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , beta-Ciclodextrinas , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Colesterol/deficiência , Cricetinae , Ciclodextrinas/farmacologia , Difusão , Recuperação de Fluorescência Após Fotodegradação , Lipídeos de Membrana/metabolismo , Dinâmica não Linear , Ratos , Temperatura
13.
PLoS One ; 13(5): e0197401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787576

RESUMO

Sphingosine-1-phosphate (S1P) is an important lipid signalling molecule. S1P is produced via intracellular phosphorylation of sphingosine (Sph). As a lipid with a single fatty alkyl chain, Sph may diffuse rapidly between cellular membranes and through the aqueous phase. Here, we show that the absence of microdomains generated by multimeric assemblies of flotillin proteins results in reduced S1P levels. Cellular phenotypes of flotillin knockout mice, including changes in histone acetylation and expression of Isg15, are recapitulated when S1P synthesis is perturbed. Flotillins bind to Sph in vitro and increase recruitment of Sph to membranes in cells. Ectopic re-localisation of flotillins within the cell causes concomitant redistribution of Sph. The data suggest that flotillins may directly or indirectly regulate cellular sphingolipid distribution and signalling.


Assuntos
Membrana Celular/química , Lisofosfolipídeos/química , Proteínas de Membrana/fisiologia , Esfingosina/análogos & derivados , Esfingosina/química , Animais , Cromatografia em Camada Fina , Citocinas/genética , Citoplasma/química , Células HeLa , Humanos , Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/química , Fenótipo , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Esfingolipídeos/química , Ubiquitinas/genética
14.
Mol Biol Cell ; 29(22): 2622-2631, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188792

RESUMO

Centrosomes are the major microtubule-nucleating and microtubule-organizing centers of cells and play crucial roles in microtubule anchoring, organelle positioning, and ciliogenesis. At the centrosome core lies a tightly associated or "engaged" mother-daughter centriole pair.  During mitotic exit, removal of centrosomal proteins pericentrin and Cep215 promotes "disengagement" by the dissolution of intercentriolar linkers, ensuring a single centriole duplication event per cell cycle.  Herein, we explore a new mechanism involving vesicular trafficking for the removal of centrosomal Cep215. Using small interfering RNA and CRISPR/Cas9 gene-edited cells, we show that the endocytic protein EHD1 regulates Cep215 transport from centrosomes to the spindle midbody, thus facilitating disengagement and duplication. We demonstrate that EHD1 and Cep215 interact and show that Cep215 displays increased localization to vesicles containing EHD1 during mitosis. Moreover, Cep215-containing vesicles are positive for internalized transferrin, demonstrating their endocytic origin. Thus, we describe a novel relationship between endocytic trafficking and the centrosome cycle, whereby vesicles of endocytic origin are used to remove key regulatory proteins from centrosomes to control centriole duplication.


Assuntos
Centríolos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Antígenos/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Citocinese , Endocitose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
Curr Biol ; 14(11): 1002-6, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15182674

RESUMO

Barriers to diffusion of proteins and lipids play an important role in generating functionally specialized regions of the plasma membrane. Such barriers have been reported at the base of axons, at the bud neck in Saccharomyces cerevisiae, as well as at the tight junctions of epithelia. How diffusion barriers are formed and how they effect behavior of both inner and outer leaflets of the bilayer are not fully understood. Here, we provide evidence for a cortical barrier to diffusion within the cleavage furrow of mammalian cells. Photobleaching-based assays were used to measure diffusion of three membrane proteins with differing topologies and putative lipid raft association, as well as the lipid analog dialkylindocarbocyanine (DiI C18, ), across the cleavage furrow. There was a block in diffusion of proteins with a cytosolic domain, but not of proteins anchored in the outer leaflet of the PM or of DiI. Diffusion of lipid raft proteins in the inner and outer leaflets of the membrane was not directly coupled. The distribution of Septin proteins, as opposed to cortical actin, was consistent with a functional role in limiting diffusion.


Assuntos
Compartimento Celular/fisiologia , Membrana Celular/fisiologia , Proteínas de Membrana/metabolismo , Transporte Biológico , Divisão Celular/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Imunofluorescência , Células HeLa , Humanos , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/fisiologia , Plasmídeos , Transfecção
16.
Curr Biol ; 27(19): 2951-2962.e5, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28943089

RESUMO

Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.


Assuntos
Proteínas de Transporte/genética , Cavéolas/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Estresse Mecânico , Proteínas de Transporte Vesicular/metabolismo
17.
J Immunol Methods ; 314(1-2): 134-46, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16893551

RESUMO

In order to optimise and improve the efficacy of transfection mediated by dendrimers, it is essential to fully understand the mechanisms of cell entry and intracellular trafficking by these complexes. Previously, we have shown that gene delivery by dendrimers is dependent from cholesterol and membrane rafts. The inhibition of transfection by treatment with filipin III suggested that gene delivery might be occurring by a caveolin-dependent pathway. We therefore investigated the internalisation and transfection properties of dendriplexes using cell lines (HeLa and HepG2) that express few caveolae. We show that, in contrast to other cells, cholesterol depletion does not affect the ability of dendriplexes to transfect these cells. Inhibition of clathrin-independent, phagocytic and macropinocytic pathways also failed to inhibit transfection of these cells and endothelial cells. However, overexpression of caveolin 1 resulted in an increased rate of dendriplex uptake into HeLa, HepG2 and endothelial cells, and increased transfection efficiency. Furthermore, in endothelial cells, confocal microscopy demonstrated colocalisation of dendriplexes and caveolin 1. These data highlight that dendriplexes may use different internalisation pathways in different cells, and that caveolae form a preferential route for gene delivery by this non-viral vector.


Assuntos
Caveolina 1/metabolismo , Dendrímeros/química , Transfecção/métodos , Androstadienos/farmacologia , Caveolina 1/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Colesterol/química , Cromonas/farmacologia , Citocalasina D/farmacologia , Dendrímeros/farmacocinética , Dendrímeros/farmacologia , Células Endoteliais , Células HeLa , Humanos , Morfolinas/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Wortmanina
19.
Trends Cell Biol ; 26(3): 177-189, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26653791

RESUMO

Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.


Assuntos
Cavéolas/fisiologia , Animais , Caveolinas/fisiologia , Endocitose , Humanos , Metabolismo dos Lipídeos , Transporte Proteico , Transdução de Sinais
20.
Nat Commun ; 6: 6867, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25897946

RESUMO

Caveolae have long been implicated in endocytosis. Recent data question this link, and in the absence of specific cargoes the potential cellular function of caveolar endocytosis remains unclear. Here we develop new tools, including doubly genome-edited cell lines, to assay the subcellular dynamics of caveolae using tagged proteins expressed at endogenous levels. We find that around 5% of the cellular pool of caveolae is present on dynamic endosomes, and is delivered to endosomes in a clathrin-independent manner. Furthermore, we show that caveolae are indeed likely to bud directly from the plasma membrane. Using a genetically encoded tag for electron microscopy and ratiometric light microscopy, we go on to show that bulk membrane proteins are depleted within caveolae. Although caveolae are likely to account for only a small proportion of total endocytosis, cells lacking caveolae show fundamentally altered patterns of membrane traffic when loaded with excess glycosphingolipid. Altogether, these observations support the hypothesis that caveolar endocytosis is specialized for transport of membrane lipid.


Assuntos
Caveolina 1/metabolismo , Glicoesfingolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Caveolina 1/genética , Membrana Celular , Regulação da Expressão Gênica/fisiologia , Genoma , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes , Proteínas de Membrana/genética , Camundongos , Células NIH 3T3 , Fotodegradação , Proteínas Recombinantes , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa