Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1870(9): 140817, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905824

RESUMO

Three decades of research, both in vitro and in vivo, have demonstrated the conformational heterogeneity that is displayed by the amyloid ß peptide (Aß) in Alzheimer's disease (AD). Understanding the distinct properties between Aß conformations and how conformation may impact cellular activity remain open questions, yet still continue to provide new insights into protein misfolding and aggregation. In particular, there is interest in the group of soluble oligomeric prefibrillar Aß species comprising lower molecular weight oligomers up to larger protofibrils. In the current study, a number of strategies were utilized to separate Aß protofibrils and oligomers and show that the smaller Aß oligomers have a much different conformation than Aß protofibrils. The differences were consistent for both Aß40 and Aß42. Protofibrils bound thioflavin T to a greater extent than oligomers, and were highly enriched in ß-sheet secondary structure. Aß oligomers possessed a more open structure with significant solvent exposure of hydrophobic domains as determined by tryptophan fluorescence and bis-ANS binding, respectively. The protofibril-selective antibody AbSL readily discerned conformational differences between protofibrils and oligomers. The more developed structure for Aß protofibrils ultimately proved critical for provoking the release of tumor necrosis factor α from microglial cells. The findings demonstrated a dependency on ß-sheet structure for soluble Aß aggregates to cause a microglial inflammatory response. The Aß aggregation process yields many conformationally-varied species with different levels of ß-structure and exposed hydrophobicity. The conformation elements likely determine biological activity and pathogenicity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa