Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524558

RESUMO

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Assuntos
Simulação por Computador , Software , Humanos , Bioengenharia , Modelos Biológicos , Sistema de Registros , Pesquisadores
2.
Bioinformatics ; 37(24): 4898-4900, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132740

RESUMO

SUMMARY: As the number and complexity of biosimulation models grows, so do demands for tools that can help users better understand models and make those models more findable, shareable and reproducible. Consistent model annotation is a step toward these goals. Both models and tools are written in a variety of different languages; thus, the community has recognized the need for standard, language-independent methods for annotation. Based on the Computational Modeling in Biology Network community consensus, we introduce an open-source, cross-platform software library for semantic annotation of models. AVAILABILITY AND IMPLEMENTATION: libOmexMeta is freely available at https://github.com/sys-bio/libOmexMeta under the Apache License 2.0. A live demonstration is at github.com/sys-bio/pyomexmeta-binder-notebook. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Semântica , Software , Simulação por Computador , Idioma , Consenso
3.
PLoS Comput Biol ; 17(5): e1008859, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983945

RESUMO

Simulating complex biological and physiological systems and predicting their behaviours under different conditions remains challenging. Breaking systems into smaller and more manageable modules can address this challenge, assisting both model development and simulation. Nevertheless, existing computational models in biology and physiology are often not modular and therefore difficult to assemble into larger models. Even when this is possible, the resulting model may not be useful due to inconsistencies either with the laws of physics or the physiological behaviour of the system. Here, we propose a general methodology for composing models, combining the energy-based bond graph approach with semantics-based annotations. This approach improves model composition and ensures that a composite model is physically plausible. As an example, we demonstrate this approach to automated model composition using a model of human arterial circulation. The major benefit is that modellers can spend more time on understanding the behaviour of complex biological and physiological systems and less time wrangling with model composition.


Assuntos
Simulação por Computador , Modelos Biológicos , Artérias/anatomia & histologia , Artérias/fisiologia , Circulação Sanguínea/fisiologia , Biologia Computacional , Gráficos por Computador , Humanos , Modelos Cardiovasculares , Semântica , Software
4.
BMC Bioinformatics ; 20(1): 457, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492098

RESUMO

BACKGROUND: Mathematics and Phy sics-based simulation models have the potential to help interpret and encapsulate biological phenomena in a computable and reproducible form. Similarly, comprehensive descriptions of such models help to ensure that such models are accessible, discoverable, and reusable. To this end, researchers have developed tools and standards to encode mathematical models of biological systems enabling reproducibility and reuse, tools and guidelines to facilitate semantic description of mathematical models, and repositories in which to archive, share, and discover models. Scientists can leverage these resources to investigate specific questions and hypotheses in a more efficient manner. RESULTS: We have comprehensively annotated a cohort of models with biological semantics. These annotated models are freely available in the Physiome Model Repository (PMR). To demonstrate the benefits of this approach, we have developed a web-based tool which enables users to discover models relevant to their work, with a particular focus on epithelial transport. Based on a semantic query, this tool will help users discover relevant models, suggesting similar or alternative models that the user may wish to explore or use. CONCLUSION: The semantic annotation and the web tool we have developed is a new contribution enabling scientists to discover relevant models in the PMR as candidates for reuse in their own scientific endeavours. This approach demonstrates how semantic web technologies and methodologies can contribute to biomedical and clinical research. The source code and links to the web tool are available at https://github.com/dewancse/model-discovery-tool.


Assuntos
Modelos Biológicos , Semântica , Humanos , Modelagem Computacional Específica para o Paciente , Reprodutibilidade dos Testes , Software
5.
J Physiol ; 594(23): 6817-6831, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353233

RESUMO

KEY POINTS: The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models. We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML. By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity. We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology. The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. ABSTRACT: The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole-cell models and linking such models in multi-scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set of principles to address this consideration. The principles are illustrated with examples that couple electrophysiology, signalling, metabolism, gene regulation and synthetic biology, together forming an architectural prototype for whole-cell modelling (including human intervention) in CellML. Such models illustrate how testable units of quantitative biophysical simulation can be constructed. Finally, future relationships between modular models so constructed and Physiome frameworks and tools are discussed, with particular reference to how such frameworks and tools can in turn be extended to complement and gain more benefit from the results of applying the principles.


Assuntos
Modelos Biológicos , Fenômenos Fisiológicos , Humanos , Software
6.
BMC Bioinformatics ; 15: 369, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494900

RESUMO

BACKGROUND: With the ever increasing use of computational models in the biosciences, the need to share models and reproduce the results of published studies efficiently and easily is becoming more important. To this end, various standards have been proposed that can be used to describe models, simulations, data or other essential information in a consistent fashion. These constitute various separate components required to reproduce a given published scientific result. RESULTS: We describe the Open Modeling EXchange format (OMEX). Together with the use of other standard formats from the Computational Modeling in Biology Network (COMBINE), OMEX is the basis of the COMBINE Archive, a single file that supports the exchange of all the information necessary for a modeling and simulation experiment in biology. An OMEX file is a ZIP container that includes a manifest file, listing the content of the archive, an optional metadata file adding information about the archive and its content, and the files describing the model. The content of a COMBINE Archive consists of files encoded in COMBINE standards whenever possible, but may include additional files defined by an Internet Media Type. Several tools that support the COMBINE Archive are available, either as independent libraries or embedded in modeling software. CONCLUSIONS: The COMBINE Archive facilitates the reproduction of modeling and simulation experiments in biology by embedding all the relevant information in one file. Having all the information stored and exchanged at once also helps in building activity logs and audit trails. We anticipate that the COMBINE Archive will become a significant help for modellers, as the domain moves to larger, more complex experiments such as multi-scale models of organs, digital organisms, and bioengineering.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Software , Arquivos , Humanos , Armazenamento e Recuperação da Informação , Internet
7.
Front Bioinform ; 3: 1107467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865672

RESUMO

Maximising FAIRness of biosimulation models requires a comprehensive description of model entities such as reactions, variables, and components. The COmputational Modeling in BIology NEtwork (COMBINE) community encourages the use of Resource Description Framework with composite annotations that semantically involve ontologies to ensure completeness and accuracy. These annotations facilitate scientists to find models or detailed information to inform further reuse, such as model composition, reproduction, and curation. SPARQL has been recommended as a key standard to access semantic annotation with RDF, which helps get entities precisely. However, SPARQL is unsuitable for most repository users who explore biosimulation models freely without adequate knowledge of ontologies, RDF structure, and SPARQL syntax. We propose here a text-based information retrieval approach, CASBERT, that is easy to use and can present candidates of relevant entities from models across a repository's contents. CASBERT adapts Bidirectional Encoder Representations from Transformers (BERT), where each composite annotation about an entity is converted into an entity embedding for subsequent storage in a list of entity embeddings. For entity lookup, a query is transformed to a query embedding and compared to the entity embeddings, and then the entities are displayed in order based on their similarity. The list structure makes it possible to implement CASBERT as an efficient search engine product, with inexpensive addition, modification, and insertion of entity embedding. To demonstrate and test CASBERT, we created a dataset for testing from the Physiome Model Repository and a static export of the BioModels database consisting of query-entities pairs. Measured using Mean Average Precision and Mean Reciprocal Rank, we found that our approach can perform better than the traditional bag-of-words method.

8.
J Integr Bioinform ; 20(1)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989443

RESUMO

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.


Assuntos
Biologia Computacional , Biologia Sintética , Linguagens de Programação , Software
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083471

RESUMO

Clinical translation of personalised computational physiology workflows and digital twins can revolutionise healthcare by providing a better understanding of an individual's physiological processes and any changes that could lead to serious health consequences. However, the lack of common infrastructure for developing these workflows and digital twins has hampered the realisation of this vision. The Auckland Bioengineering Institute's 12 LABOURS project aims to address these challenges by developing a Digital Twin Platform to enable researchers to develop and personalise computational physiology models to an individual's health data in clinical workflows. This will allow clinical trials to be more efficiently conducted to demonstrate the efficacy of these personalised clinical workflows. We present a demonstration of the platform's capabilities using publicly available data and an existing automated computational physiology workflow developed to assist clinicians with diagnosing and treating breast cancer. We also demonstrate how the platform facilitates the discovery and exploration of data and the presentation of workflow results as part of clinical reports through a web portal. Future developments will involve integrating the platform with health systems and remote-monitoring devices such as wearables and implantables to support home-based healthcare. Integrating outputs from multiple workflows that are applied to the same individual's health data will also enable the generation of their personalised digital twin.Clinical Relevance- The proposed 12 LABOURS Digital Twin Platform will enable researchers to 1) more efficiently conduct clinical trials to assess the efficacy of their computational physiology workflows and support the clinical translation of their research; 2) reuse primary and derived data from these workflows to generate novel workflows; and 3) generate personalised digital twins by integrating the outputs of different computational physiology workflows.


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Fluxo de Trabalho
10.
Bioinformatics ; 27(5): 743-4, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21216774

RESUMO

MOTIVATION: The Physiome Model Repository 2 (PMR2) software was created as part of the IUPS Physiome Project (Hunter and Borg, 2003), and today it serves as the foundation for the CellML model repository. Key advantages brought to the end user by PMR2 include: facilities for model exchange, enhanced collaboration and a detailed change history for each model. AVAILABILITY: PMR2 is available under an open source license at http://www.cellml.org/tools/pmr/; a fully functional instance of this software can be accessed at http://models.physiomeproject.org/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Modelos Biológicos , Software , Internet
12.
PLoS One ; 17(11): e0275837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355848

RESUMO

We review a collection of published renal epithelial transport models, from which we build a consistent and reusable mathematical model able to reproduce many observations and predictions from the literature. The flexible modular model we present here can be adapted to specific configurations of epithelial transport, and in this work we focus on transport in the proximal convoluted tubule of the renal nephron. Our mathematical model of the epithelial proximal convoluted tubule describes the cellular and subcellular mechanisms of the transporters, intracellular buffering, solute fluxes, and other processes. We provide free and open access to the Python implementation to ensure our multiscale proximal tubule model is accessible; enabling the reader to explore the model through setting their own simulations, reproducibility tests, and sensitivity analyses.


Assuntos
Túbulos Renais Proximais , Néfrons , Reprodutibilidade dos Testes , Túbulos Renais Proximais/metabolismo , Rim , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
13.
PLoS One ; 17(6): e0269497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657966

RESUMO

Hierarchical modelling is essential to achieving complex, large-scale models. However, not all modelling schemes support hierarchical composition, and correctly mapping points of connection between models requires comprehensive knowledge of each model's components and assumptions. To address these challenges in integrating biosimulation models, we propose an approach to automatically and confidently compose biosimulation models. The approach uses bond graphs to combine aspects of physical and thermodynamics-based modelling with biological semantics. We improved on existing approaches by using semantic annotations to automate the recognition of common components. The approach is illustrated by coupling a model of the Ras-MAPK cascade to a model of the upstream activation of EGFR. Through this methodology, we aim to assist researchers and modellers in readily having access to more comprehensive biological systems models.


Assuntos
Semântica , Software , Termodinâmica
14.
Front Physiol ; 13: 965054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176770

RESUMO

While ion channels and transporters involved in excitation-contraction coupling have been linked and constructed as comprehensive computational models, validation of whether each individual component of a model can be reused has not been previously attempted. Here we address this issue while using a novel modular modeling approach to investigate the underlying mechanism for the differences between left ventricle (LV) and right ventricle (RV). Our model was developed from modules constructed using the module assembly principles of the CellML model markup language. The components of three existing separate models of cardiac function were disassembled as to create smaller modules, validated individually, and then the component parts were combined into a new integrative model of a rat ventricular myocyte. The model was implemented in OpenCOR using the CellML standard in order to ensure reproducibility. Simulated action potential (AP), Ca2+ transient, and tension were in close agreement with our experimental measurements: LV AP showed a prolonged duration and a more prominent plateau compared with RV AP; Ca2+ transient showed prolonged duration and slow decay in LV compared to RV; the peak value and relaxation of tension were larger and slower, respectively, in LV compared to RV. Our novel approach of module-based mathematical modeling has established that the ionic mechanisms underlying the APs and Ca2+ handling play a role in the variation in force production between ventricles. This simulation process also provides a useful way to reuse and elaborate upon existing models in order to develop a new model.

15.
Math Biosci ; 352: 108901, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096376

RESUMO

The Systems Biology Markup Language (SBML) is a popular software-independent XML-based format for describing models of biological phenomena. The BioModels Database is the largest online repository of SBML models. Several tools and platforms are available to support the reuse and composition of SBML models. However, these tools do not explicitly assess whether models are physically plausible or thermodynamically consistent. This often leads to ill-posed models that are physically impossible, impeding the development of realistic complex models in biology. Here, we present a framework that can automatically convert SBML models into bond graphs, which imposes energy conservation laws on these models. The new bond graph models are easily mergeable, resulting in physically plausible coupled models. We illustrate this by automatically converting and coupling a model of pyruvate distribution to a model of the pentose phosphate pathway.


Assuntos
Linguagens de Programação , Biologia de Sistemas , Documentação , Idioma , Modelos Biológicos , Piruvatos , Software , Biologia de Sistemas/métodos
16.
Front Physiol ; 13: 820683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283794

RESUMO

Semantic annotation is a crucial step to assure reusability and reproducibility of biosimulation models in biology and physiology. For this purpose, the COmputational Modeling in BIology NEtwork (COMBINE) community recommends the use of the Resource Description Framework (RDF). This grounding in RDF provides the flexibility to enable searching for entities within models (e.g., variables, equations, or entire models) by utilizing the RDF query language SPARQL. However, the rigidity and complexity of the SPARQL syntax and the nature of the tree-like structure of semantic annotations, are challenging for users. Therefore, we propose NLIMED, an interface that converts natural language queries into SPARQL. We use this interface to query and discover model entities from repositories of biosimulation models. NLIMED works with the Physiome Model Repository (PMR) and the BioModels database and potentially other repositories annotated using RDF. Natural language queries are first "chunked" into phrases and annotated against ontology classes and predicates utilizing different natural language processing tools. Then, the ontology classes and predicates are composed as SPARQL and finally ranked using our SPARQL Composer and our indexing system. We demonstrate that NLIMED's approach for chunking and annotating queries is more effective than the NCBO Annotator for identifying relevant ontology classes in natural language queries.Comparison of NLIMED's behavior against historical query records in the PMR shows that it can adapt appropriately to queries associated with well-annotated models.

17.
BMC Bioinformatics ; 12: 22, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21235804

RESUMO

BACKGROUND: Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs) for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. RESULTS: We have extended the Physiome Model Repository software to be fully revision history aware, by building it on top of Mercurial, an existing DVCS. We have demonstrated the utility of this approach, when used in conjunction with the model composition facilities in CellML, to build and understand more complex models. We have also demonstrated the ability of the repository software to present version history to casual users over the web, and to highlight specific versions which are likely to be useful to users. CONCLUSIONS: Providing facilities for maintaining and using revision history information is an important part of building a useful repository of computational models, as this information is useful both for understanding the source of and justification for parts of a model, and to facilitate automated processes such as merges. The availability of fully revision history aware repositories, and associated tools, will therefore be of significant benefit to the community.


Assuntos
Simulação por Computador , Modelos Biológicos , Biologia Computacional , Software
18.
J Integr Bioinform ; 18(3)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668356

RESUMO

A standardized approach to annotating computational biomedical models and their associated files can facilitate model reuse and reproducibility among research groups, enhance search and retrieval of models and data, and enable semantic comparisons between models. Motivated by these potential benefits and guided by consensus across the COmputational Modeling in BIology NEtwork (COMBINE) community, we have developed a specification for encoding annotations in Open Modeling and EXchange (OMEX)-formatted archives. This document details version 1.2 of the specification, which builds on version 1.0 published last year in this journal. In particular, this version includes a set of initial model-level annotations (whereas v 1.0 described exclusively annotations at a smaller scale). Additionally, this version uses best practices for namespaces, and introduces omex-library.org as a common root for all annotations. Distributing modeling projects within an OMEX archive is a best practice established by COMBINE, and the OMEX metadata specification presented here provides a harmonized, community-driven approach for annotating a variety of standardized model representations. This specification acts as a technical guideline for developing software tools that can support this standard, and thereby encourages broad advances in model reuse, discovery, and semantic analyses.


Assuntos
Metadados , Software , Biologia Computacional , Reprodutibilidade dos Testes , Semântica
19.
Front Physiol ; 12: 699152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950044

RESUMO

It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10-20% increase in absorption for luminal glucose levels in the a 20-100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.

20.
J Integr Bioinform ; 18(3)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34674411

RESUMO

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards.


Assuntos
Biologia Computacional , Biologia Sintética , Simulação por Computador , Metadados , Linguagens de Programação , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa