Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Chem Soc ; 135(21): 7883-90, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23597284

RESUMO

The measurement of donor lifetime modification by Förster resonance energy transfer (FRET) is a widely used tool for detecting protein-protein interactions and protein conformation change. Such measurements can be compromised by the presence of a significant noninteracting fraction of molecules. Combining time-resolved intensity and anisotropy measurements gives access to both molecular distance and orientation. Fluorescent proteins frequently used to detect energy transfer in biological systems often exhibit decay characteristics indicative of more than one excited state. However, little attention has thus far been given to the specific modes of energy transfer, in particular, which states are predominantly coupled. Here, we use a previously characterized dimerization system to study energy transfer between EGFP and mCherry. Optically excited EGFP and mCherry both exhibit biexponential decays, and FRET should therefore involve dipole-dipole transfer between these four states. Analysis of the sensitized fluorescence anisotropy and intensity decays indicates that FRET transfer is predominantly from the shorter lived EGFP emitting state (2.43 ns) to the longer lived (ca. 2.77 ns) minority component (ca. 16%) of the optically excited mCherry emission. This high degree of state selection between these two widely used FRET pairs highlights the fundamental differences that can arise between direct optical excitation of an isotropic molecular population and dipole-dipole coupling in a far from isotropic interaction geometry and has consequences regarding the accurate interpretation of fluorescent protein FRET data.


Assuntos
Proteínas Serina-Treonina Quinases/química , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Piruvato Desidrogenase Quinase de Transferência de Acetil
2.
Proc Natl Acad Sci U S A ; 106(49): 20758-63, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19933326

RESUMO

The tumor suppressor p53 is a member of the emerging class of proteins that have both folded and intrinsically disordered domains, which are a challenge to structural biology. Its N-terminal domain (NTD) is linked to a folded core domain, which has a disordered link to the folded tetramerization domain, which is followed by a disordered C-terminal domain. The quaternary structure of human p53 has been solved by a combination of NMR spectroscopy, electron microscopy, and small-angle X-ray scattering (SAXS), and the NTD ensemble structure has been solved by NMR and SAXS. The murine p53 is reported to have a different quaternary structure, with the N and C termini interacting. Here, we used single-molecule FRET (SM-FRET) and ensemble FRET to investigate the conformational dynamics of the NTD of p53 in isolation and in the context of tetrameric full-length p53 (flp53). Our results showed that the isolated NTD was extended in solution with a strong preference for residues 66-86 forming a polyproline II conformation. The NTD associated weakly with the DNA binding domain of p53, but not the C termini. We detected multiple conformations in flp53 that were likely to result from the interactions of NTD with the DNA binding domain of each monomeric p53. Overall, the SM-FRET results, in addition to corroborating the previous ensemble findings, enabled the identification of the existence of multiple conformations of p53, which are often averaged and neglected in conventional ensemble techniques. Our study exemplifies the usefulness of SM-FRET in exploring the dynamic landscape of multimeric proteins that contain regions of unstructured domains.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Aminoácidos/metabolismo , Animais , Difusão , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Espalhamento a Baixo Ângulo , Fatores de Tempo , Difração de Raios X
3.
J Phys Chem B ; 123(22): 4705-4717, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021092

RESUMO

Two-photon absorption (2PA) finds widespread application in biological systems, which frequently exhibit heterogeneous fluorescence decay dynamics corresponding to multiple species or environments. By combining polarized 2PA with time-resolved fluorescence intensity and anisotropy decay measurements, we show how the two-photon transition tensors for the components of a heterogeneous population can be separately determined, allowing structural differences between the two fluorescent states of the redox cofactor NAD(P)H to be identified. The results support the view that the two states correspond to alternate configurations of the nicotinamide ring, rather than folded and extended conformations of the entire molecule.

5.
Knee ; 19(4): 329-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21703859

RESUMO

A reduced range of motion post total knee replacement (TKR) is a recognised problem. Manipulation under anaesthesia (MUA) is commonly performed in the stiff post-operative TKR. Long-term results are variable in the literature. We retrospectively reviewed, prospectively collected data on 48 patients followed up since 1996 from one centre, over an average of 7.5 years, (range 1 to 10 years) and report on the long-term results. During the study period 2.3% of TKRs underwent MUA. The mean time to MUA post TKR was 12.3 weeks (range 3 to 48). Pre MUA, the mean flexion was 53°. The mean immediate passive flexion post MUA was 97°, an improvement of 44° (Range 10° to 90°, p<0.05). By 1year, the mean flexion was 87°, an improvement of 34°, (range -15° to 70°, p<0.05). At 10 years the mean flexion was 86°, (range 55° to 100°, p<0.05). We found no difference in the gain in range of motion (ROM) between knees manipulated before or after 12 weeks. Additionally, the gain was no different in stiff knees with a pre TKR ROM <90°, compared to a pre TKR ROM >90°. There were no complications as a result of MUA. However, one patient was eventually revised at 2 years secondary to low grade infection. Our findings show that MUA is a safe and effective method at improving the ROM in a stiff post-operative TKR. The improvement is maintained in the long term irrespective of time to MUA and range of motion pre TKR.


Assuntos
Artroplastia do Joelho/reabilitação , Articulação do Joelho/fisiopatologia , Manipulação Ortopédica , Amplitude de Movimento Articular , Adulto , Idoso , Idoso de 80 Anos ou mais , Anestesia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Retrospectivos
6.
Mol Biosyst ; 5(9): 1025-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668868

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is a member of the serpin (serine protease inhibitor) superfamily. Like most serpins, the inhibitory function of PAI-1 relies on a flexible reactive centre loop (RCL) undertaking a striking conformational transition. We have investigated the conformational dynamics of the RCL of PAI-1 by time-resolved fluorescence anisotropy. A heterogeneous population model with three rotational correlation times has been employed to account for the "dip and rise" observed in fluorescence anisotropy decay curves. The RCL becomes almost fully solvent exposed and exhibits faster rotation when PAI-1 interacts with a RCL-mimicking octapeptide which blocks the loop insertion pathway, indicating that the RCL is well displaced from the protein surface; while the binding of Somatomedin B (SMB) domain of vitronectin, only induces small changes in the RCL. Comparison of the fluorescence lifetime and anisotropy decay of the wild-type PAI-1 with that of the stabilised mutant suggests that there would be no major structural differences between them. Our results indicate that in a native serpin, the P14 residue of the hinge region can flip in and out of the central beta-sheet A more readily than previously thought, which is likely an inherent property for serpins' protease inhibitory function.


Assuntos
Polarização de Fluorescência/métodos , Nanotecnologia/métodos , Inibidor 1 de Ativador de Plasminogênio/química , Corantes Fluorescentes/química , Modelos Moleculares , Naftalenossulfonatos/química , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Somatomedinas/metabolismo , Vitronectina/metabolismo
7.
J Am Chem Soc ; 128(35): 11423-32, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16939265

RESUMO

We have studied a donor-acceptor fluorophore-labeled DNA switch where the acceptor is Alexa-647, a carbocyanine dye, in solution at the single molecule level to elucidate the fluorescence switching mechanism. The acceptor, which is in an initial high fluorescence trans state, undergoes a photoisomerization reaction resulting in two additional states during its sub-millisecond transit across the probe volume. These two states are assigned to a nonfluorescent triplet trans state that strongly quenches the donor emission and a singlet cis state that blocks the fluorescence resonance energy transfer (FRET) pathway and gives rise to donor-only fluorescence. The formation of these states is faster than the transit time, so that all three states are approximately equally populated under our experimental conditions. The acceptor dye can stick to the DNA in all these states, with the rate of unsticking determining the rate of isomerization into the other states. Measurement of the rate of change of the FRET signal therefore provides information about the fluorophore-DNA intramolecular dynamics. These results explain the large zero peak in the proximity ratio, often seen in single molecule FRET experiments, and suggest that photoinduced effects may be important in single molecule FRET experiments using carbocyanine dyes. They also suggest that for fast photoinduced switching the interactions of the acceptor dye with the DNA and other surfaces should be prevented.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Carbocianinas/química , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Polarização de Fluorescência , Estrutura Molecular , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa