Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749326

RESUMO

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Assuntos
Doença de Alzheimer , Feminino , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglia/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
2.
Nature ; 615(7950): 151-157, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36509106

RESUMO

In the past decade, single-cell transcriptomics has helped to uncover new cell types and states and led to the construction of a cellular compendium of health and disease. Despite this progress, some difficult-to-sequence cells remain absent from tissue atlases. Eosinophils-elusive granulocytes that are implicated in a plethora of human pathologies1-5-are among these uncharted cell types. The heterogeneity of eosinophils and the gene programs that underpin their pleiotropic functions remain poorly understood. Here we provide a comprehensive single-cell transcriptomic profiling of mouse eosinophils. We identify an active and a basal population of intestinal eosinophils, which differ in their transcriptome, surface proteome and spatial localization. By means of a genome-wide CRISPR inhibition screen and functional assays, we reveal a mechanism by which interleukin-33 (IL-33) and interferon-γ (IFNγ) induce the accumulation of active eosinophils in the inflamed colon. Active eosinophils are endowed with bactericidal and T cell regulatory activity, and express the co-stimulatory molecules CD80 and PD-L1. Notably, active eosinophils are enriched in the lamina propria of a small cohort of patients with inflammatory bowel disease, and are closely associated with CD4+ T cells. Our findings provide insights into the biology of eosinophils and highlight the crucial contribution of this cell type to intestinal homeostasis, immune regulation and host defence. Furthermore, we lay a framework for the characterization of eosinophils in human gastrointestinal diseases.


Assuntos
Colite , Eosinófilos , Imunidade , Intestinos , Animais , Humanos , Camundongos , Colite/imunologia , Colite/patologia , Eosinófilos/classificação , Eosinófilos/citologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Análise da Expressão Gênica de Célula Única , Transcriptoma , Proteoma , Interleucina-33 , Interferon gama , Linfócitos T , Antígeno B7-1/metabolismo , Intestinos/imunologia , Intestinos/patologia
3.
EMBO J ; 42(20): e114400, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37735935

RESUMO

Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.


Assuntos
RNA Longo não Codificante , Transcriptoma , RNA Longo não Codificante/genética , Regulação da Expressão Gênica de Plantas , RNA não Traduzido/genética , Estresse Fisiológico/genética , RNA de Plantas/genética
4.
Proc Natl Acad Sci U S A ; 121(23): e2400727121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38819998

RESUMO

Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.

5.
Mol Cell ; 69(4): 709-719.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398448

RESUMO

Unlike in metazoans, plant microRNAs (miRNAs) undergo stepwise nuclear maturation before engaging cytosolic, sequence-complementary transcripts in association with the silencing effector protein ARGONAUTE1 (AGO1). Since their discovery, how and under which form plant miRNAs translocate to the cytosol has remained unclear, as has their sub-cellular AGO1 loading site(s). Here, we show that the N termini of all plant AGO1s contain a nuclear-localization (NLS) and nuclear-export signal (NES) that, in Arabidopsis thaliana (At), enables AtAGO1 nucleo-cytosolic shuttling in a Leptomycin-B-inhibited manner, diagnostic of CRM1(EXPO1)/NES-dependent nuclear export. Nuclear-only AtAGO1 contains the same 2'O-methylated miRNA cohorts as its nucleo-cytosolic counterpart, but it preferentially interacts with the miRNA loading chaperone HSP90. Furthermore, mature miRNA translocation and miRNA-mediated silencing both require AtAGO1 nucleo-cytosolic shuttling. These findings lead us to propose a substantially revised view of the plant miRNA pathway in which miRNAs are matured, methylated, loaded into AGO1 in the nucleus, and exported to the cytosol as AGO1:miRNA complexes in a CRM1(EXPO1)/NES-dependent manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Modelos Moleculares , Transporte Proteico , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Núcleo Celular/genética , Citosol/metabolismo , Frações Subcelulares
6.
Nucleic Acids Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850162

RESUMO

MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs). In this study, we demonstrate the critical role of the miRNA/miRNA* duplex region in the processing of miRNA precursors. We observed that endogenous MIRNAs frequently experience suboptimal processing in vivo due to mismatches in the miRNA/miRNA* duplex, a key region that fine-tunes miRNA levels. Enhancing the interaction energy of the miRNA/miRNA* duplex in two-step MIRNAs results in a substantial increase in miRNA levels. Conversely, sequential MIRNAs display distinct and specific requirements for the miRNA/miRNA* duplexes along their foldback structure. Our work establishes a connection between the miRNA/miRNA* structure and precursor processing mechanisms. Furthermore, we reveal a link between the biological function of miRNAs and the processing mechanism of their precursors with the evolution of plant miRNA/miRNA* duplex structures.

7.
Nucleic Acids Res ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769059

RESUMO

Plant ARGONAUTE (AGO) proteins play pivotal roles regulating gene expression through small RNA (sRNA) -guided mechanisms. Among the 10 AGO proteins in Arabidopsis thaliana, AGO1 stands out as the main effector of post-transcriptional gene silencing. Intriguingly, a specific region of AGO1, its N-terminal extension (NTE), has garnered attention in recent studies due to its involvement in diverse regulatory functions, including subcellular localization, sRNA loading and interactions with regulatory factors. In the field of post-translational modifications (PTMs), little is known about arginine methylation in Arabidopsis AGOs. In this study, we show that NTE of AGO1 (NTEAGO1) undergoes symmetric arginine dimethylation at specific residues. Moreover, NTEAGO1 interacts with the methyltransferase PRMT5, which catalyzes its methylation. Notably, we observed that the lack of symmetric dimethylarginine has no discernible impact on AGO1's subcellular localization or miRNA loading capabilities. However, the absence of PRMT5 significantly alters the loading of a subgroup of sRNAs into AGO1 and reshapes the NTEAGO1 interactome. Importantly, our research shows that symmetric arginine dimethylation of NTEs is a common process among Arabidopsis AGOs, with AGO1, AGO2, AGO3 and AGO5 undergoing this PTM. Overall, this work deepens our understanding of PTMs in the intricate landscape of RNA-associated gene regulation.

8.
Mol Microbiol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690771

RESUMO

The small intestine represents a complex and understudied gut niche with significant implications for human health. Indeed, many infectious and non-infectious diseases center within the small intestine and present similar clinical manifestations to large intestinal disease, complicating non-invasive diagnosis and treatment. One major neglected aspect of small intestinal diseases is the feedback relationship with the resident collection of commensal organisms, the gut microbiota. Studies focused on microbiota-host interactions in the small intestine in the context of infectious and non-infectious diseases are required to identify potential therapeutic targets dissimilar from those used for large bowel diseases. While sparsely populated, the small intestine represents a stringent commensal bacterial microenvironment the host relies upon for nutrient acquisition and protection against invading pathogens (colonization resistance). Indeed, recent evidence suggests that disruptions to host-microbiota interactions in the small intestine impact enteric bacterial pathogenesis and susceptibility to non-infectious enteric diseases. In this review, we focus on the microbiota's impact on small intestine function and the pathogenesis of infectious and non-infectious diseases of the gastrointestinal (GI) tract. We also discuss gaps in knowledge on the role of commensal microorganisms in proximal GI tract function during health and disease.

9.
Mol Psychiatry ; 29(2): 505-517, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167865

RESUMO

Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.


Assuntos
Mitocôndrias , Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Camundongos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Fatores de Proteção , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Modelos Animais de Doenças , Masculino , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
10.
Ann Intern Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39008854

RESUMO

"Spin" refers to misleading reporting, interpretation, and extrapolation of findings in primary and secondary research (such as in systematic reviews). The study of spin primarily focuses on beneficial outcomes. The objectives of this research were threefold: first, to develop a framework for identifying spin associated with harms in systematic reviews of interventions; second, to apply the framework to a set of reviews, thereby pinpointing instances where spin may be present; and finally, to revise the spin examples, offering guidance on how spin can be rectified.The authors developed their framework through an iterative process that engaged an international group of researchers specializing in spin and reporting bias. The framework comprises 12 specific types of spin for harms, grouped by 7 categories across the 3 domains (reporting, interpretation, and extrapolation). The authors subsequently gathered instances of spin from a random sample of 100 systematic reviews of interventions. Of the 58 reviews that assessed harm and the 42 that did not, they found that 28 (48%) and 6 (14%), respectively, had at least 1 of the 12 types of spin for harms. Inappropriate extrapolation of the results and conclusions for harms to populations, interventions, outcomes, or settings not assessed in a review was the most common category of spin in 17 of 100 reviews.The authors revised the examples to remove spin, taking into consideration the context (for example, medical discipline, source population), findings for harms, and methodological limitations of the original reviews. They provide guidance for authors, peer reviewers, and editors in recognizing and rectifying or (preferably) avoiding spin, ultimately enhancing the clarity and accuracy of harms reporting in systematic review publications.

11.
Circulation ; 148(23): 1870-1886, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37886847

RESUMO

BACKGROUND: Microvasculature dysfunction is a common finding in pathologic remodeling of the heart and is thought to play an important role in the pathogenesis of hypertrophic cardiomyopathy (HCM), a disease caused by sarcomere gene mutations. We hypothesized that microvascular dysfunction in HCM was secondary to abnormal microvascular growth and could occur independent of ventricular hypertrophy. METHODS: We used multimodality imaging methods to track the temporality of microvascular dysfunction in HCM mouse models harboring mutations in the sarcomere genes Mybpc3 (cardiac myosin binding protein C3) or Myh6 (myosin heavy chain 6). We performed complementary molecular methods to assess protein quantity, interactions, and post-translational modifications to identify mechanisms regulating this response. We manipulated select molecular pathways in vivo using both genetic and pharmacological methods to validate these mechanisms. RESULTS: We found that microvascular dysfunction in our HCM models occurred secondary to reduced myocardial capillary growth during the early postnatal time period and could occur before the onset of myocardial hypertrophy. We discovered that the E3 ubiquitin protein ligase MDM2 (murine double minute 2) dynamically regulates the protein stability of both HIF1α (hypoxia-inducible factor 1 alpha) and HIF2α (hypoxia-inducible factor 2 alpha)/EPAS1 (endothelial PAS domain protein 1) through canonical and noncanonical mechanisms. The resulting HIF imbalance leads to reduced proangiogenic gene expression during a key period of myocardial capillary growth. Reducing MDM2 protein levels by genetic or pharmacological methods normalized HIF protein levels and prevented the development of microvascular dysfunction in both HCM models. CONCLUSIONS: Our results show that sarcomere mutations induce cardiomyocyte MDM2 signaling during the earliest stages of disease, and this leads to long-term changes in the myocardial microenvironment.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Proto-Oncogênicas c-mdm2 , Camundongos , Animais , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Mutação , Hipertrofia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
12.
J Neuroinflammation ; 21(1): 185, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080670

RESUMO

BACKGROUND: Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aß plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS: In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS: Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aß plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS: Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.


Assuntos
Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Fosfolipídeos , Ratos Transgênicos , Proteínas tau , Animais , Fosfolipídeos/metabolismo , Ratos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Masculino , Humanos
13.
Pediatr Blood Cancer ; : e31195, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080490

RESUMO

BACKGROUND: Event-free survival (EFS) considers other adverse events in addition to mortality. It therefore provides a more complete understanding of the effectiveness and consequences of treatment than standard survival measures, but is rarely reported at the population level for childhood cancer. PROCEDURE: Our study cohort (n = 7067) was obtained from the Australian Childhood Cancer Registry, including children aged under 15 diagnosed with cancer between 2006 and 2015, with follow-up potentially available to 31 December 2020. The events of interest were relapse following remission, progressive disease, diagnosis of a second primary cancer or death from any cause. Five-year EFS and all-cause observed survival were both calculated, stratified by type of childhood cancer, remoteness of residence and stage at diagnosis. Differences in EFS were assessed using multivariable flexible parametric models. RESULTS: Approximately one quarter of patients (n = 1605 of 7067, 23%) experienced at least one of the events of interest within 5 years of diagnosis. Relapse was twice as common for children with metastatic/advanced disease (22%) versus children with localised/limited cancers (11%). Overall 5-year EFS was 75.0% (95% confidence interval [CI]: 73.9%-76.0%), compared to 85.8% observed survival (95% CI: 85.0%-86.6%). Patients with other gliomas had the lowest EFS (35.4%, 95% CI: 27.8%-43.1%). EFS was significantly lower among children with acute myeloid leukaemia in outer regional/remote areas compared to major cities (adjusted hazard ratio [HR] = 1.90, 95% CI: 1.20-3.00). CONCLUSIONS: Reporting EFS at a population level provides further insight on a wider range of impacts apart from mortality alone, contributing towards efforts to improve the management and outcomes of childhood cancer.

14.
Chem Rev ; 122(12): 10777-10820, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34928131

RESUMO

Implicit solvation is an effective, highly coarse-grained approach in atomic-scale simulations to account for a surrounding liquid electrolyte on the level of a continuous polarizable medium. Originating in molecular chemistry with finite solutes, implicit solvation techniques are now increasingly used in the context of first-principles modeling of electrochemistry and electrocatalysis at extended (often metallic) electrodes. The prevalent ansatz to model the latter electrodes and the reactive surface chemistry at them through slabs in periodic boundary condition supercells brings its specific challenges. Foremost this concerns the difficulty of describing the entire double layer forming at the electrified solid-liquid interface (SLI) within supercell sizes tractable by commonly employed density functional theory (DFT). We review liquid solvation methodology from this specific application angle, highlighting in particular its use in the widespread ab initio thermodynamics approach to surface catalysis. Notably, implicit solvation can be employed to mimic a polarization of the electrode's electronic density under the applied potential and the concomitant capacitive charging of the entire double layer beyond the limitations of the employed DFT supercell. Most critical for continuing advances of this effective methodology for the SLI context is the lack of pertinent (experimental or high-level theoretical) reference data needed for parametrization.

15.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495326

RESUMO

Adaptation to different forms of environmental stress is crucial for maintaining essential cellular functions and survival. The nucleolus plays a decisive role as a signaling hub for coordinating cellular responses to various extrinsic and intrinsic cues. p53 levels are normally kept low in unstressed cells, mainly due to E3 ubiquitin ligase MDM2-mediated degradation. Under stress, nucleophosmin (NPM) relocates from the nucleolus to the nucleoplasm and binds MDM2, thereby preventing degradation of p53 and allowing cell-cycle arrest and DNA repair. Here, we demonstrate that the mammalian sirtuin SIRT7 is an essential component for the regulation of p53 stability during stress responses induced by ultraviolet (UV) irradiation. The catalytic activity of SIRT7 is substantially increased upon UV irradiation through ataxia telangiectasia mutated and Rad3 related (ATR)-mediated phosphorylation, which promotes efficient deacetylation of the SIRT7 target NPM. Deacetylation is required for stress-dependent relocation of NPM into the nucleoplasm and MDM2 binding, thereby preventing ubiquitination and degradation of p53. In the absence of SIRT7, stress-dependent stabilization of p53 is abrogated, both in vitro and in vivo, impairing cellular stress responses. The study uncovers an essential SIRT7-dependent mechanism for stabilization of the tumor suppressor p53 in response to genotoxic stress.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Acetilação/efeitos da radiação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Catálise/efeitos da radiação , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Nucléolo Celular/efeitos da radiação , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleofosmina , Fosforilação/efeitos da radiação , Estabilidade Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transcrição Gênica/efeitos da radiação , Ubiquitinação/efeitos da radiação
16.
Rev Neurol (Paris) ; 180(5): 368-377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429159

RESUMO

Research on Alzheimer disease (AD) genetics has provided critical advances to the knowledge of AD pathophysiological mechanisms. The etiology of AD can be divided into monogenic (autosomal dominant inheritance) and complex (multifactorial determinism). In monogenic AD, recent advances mainly concern mutation-associated mechanisms, presymptomatic clinical studies, and the search for modifiers of ages of onset that are still ongoing. In complex AD, genetic factors can be further categorized into three classes: (i) the APOE-ɛ4 and ɛ2 common alleles that represent a category by themselves as they are both common and with a strong impact on AD risk; (ii) common variants with a modest effect, identified in genome-wide association studies (GWAS); and (iii) rare variants with a moderate-to-strong effect, identified in case-control sequencing studies. Regarding APOE, odds ratios, available in multiple ethnicities, can now be converted into penetrance curves, although such curves remain to be performed in diverse ethnicities. In addition, advances in the understanding of mechanisms have been recently reported and rare APOE variants add to the complexity. In the GWAS category, novel loci have been discovered thanks to larger studies, doubling the number of hits as compared to the previous reference meta-analysis. However, such modest risk factors cannot be used in the clinic, neither individually, nor in genetic risk scores. In the category of rare variants, two novel genes, ABCA1 and ATP8B4 now add to the three main ones, TREM2, SORL1, and ABCA7. The study of such rare variants suggests oligogenic inheritance in some families, as also suggested by digenic penetrance curves for SORL1 loss-of-function variants with APOE-ɛ4. Cumulate frequencies of definite (so-called) rare risk factors are 2.3% to 3.6% (depending on thresholds on odds ratios) in control databases and many more remain to be classified and identified, showing how important these risk factors may be as part of the complex determinism of AD. A better understanding of these rare risk factors and their combined effects on each other, with common variants, and with environmental factors, should allow for a prediction of AD risk and, eventually, preventive medicine. Taken together, most genetic determinants of AD, in monogenic and in complex forms, point toward the aggregation of Aß as a pivotal triggering factor, such that targeting it may be efficient as prevention in at-risk individuals. The role of neuroinflammation, microglia, and Tau pathology modulation are important sources of research for disease modification.


Assuntos
Doença de Alzheimer , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Apolipoproteínas E/genética
17.
J Biol Chem ; 298(10): 102397, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988640

RESUMO

Sterols in eukaryotic cells play important roles in modulating membrane fluidity and in cell signaling and trafficking. During evolution, a combination of gene losses and acquisitions gave rise to an extraordinary diversity of sterols in different organisms. The sterol C-22 desaturase identified in plants and fungi as a cytochrome P-450 monooxygenase evolved from the first eukaryotic cytochrome P450 and was lost in many lineages. Although the ciliate Tetrahymena thermophila desaturates sterols at the C-22 position, no cytochrome P-450 orthologs are present in the genome. Here, we aim to identify the genes responsible for the desaturation as well as their probable origin. We used gene knockout and yeast heterologous expression approaches to identify two putative genes, retrieved from a previous transcriptomic analysis, as sterol C-22 desaturases. Furthermore, we demonstrate using bioinformatics and evolutionary analyses that both genes encode a novel type of sterol C-22 desaturase that belongs to the large fatty acid hydroxylase/desaturase superfamily and the genes originated by genetic duplication prior to functional diversification. These results stress the widespread existence of nonhomologous isofunctional enzymes among different lineages of the tree of life as well as the suitability for the use of T. thermophila as a valuable model to investigate the evolutionary process of large enzyme families.


Assuntos
Proteínas de Protozoários , Estearoil-CoA Dessaturase , Tetrahymena thermophila , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Saccharomyces cerevisiae , Estearoil-CoA Dessaturase/química , Estearoil-CoA Dessaturase/classificação , Estearoil-CoA Dessaturase/genética , Esteróis/metabolismo , Tetrahymena thermophila/enzimologia , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética
18.
J Exp Bot ; 74(7): 2374-2388, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722331

RESUMO

ARGONAUTE (AGO) proteins are the final effectors of small RNA-mediated transcriptional and post-transcriptional silencing pathways. Plant AGO proteins are essential for preserving genome integrity, regulating developmental processes, and in stress responses and pathogen defense. Since the discovery of the first eukaryotic AGO in Arabidopsis, our understanding of these proteins has grown exponentially throughout all the eukaryotes. However, many aspects of AGO proteins' modes of action and how they are influenced by their subcellular localization are still to be elucidated. Here, we provide an updated and comprehensive view of the evolution, domain architecture and roles, expression pattern, subcellular localization, and biological functions of the 10 AGO proteins in Arabidopsis.


Assuntos
Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , MicroRNAs/metabolismo , Interferência de RNA
19.
J Exp Bot ; 74(13): 3806-3820, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-36861321

RESUMO

Gene targeting can be used to make modifications at a specific region in a plant's genome and create high-precision tools for plant biotechnology and breeding. However, its low efficiency is a major barrier to its use in plants. The discovery of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-based site-specific nucleases capable of inducing double-strand breaks in desired loci resulted in the development of novel approaches for plant gene targeting. Several studies have recently demonstrated improvements in gene targeting efficiency through cell-type-specific expression of Cas nucleases, the use of self-amplified gene-targeting-vector DNA, or manipulation of RNA silencing and DNA repair pathways. In this review, we summarize recent advances in CRISPR/Cas-mediated gene targeting in plants and discuss potential efficiency improvements. Increasing the efficiency of gene targeting technology will help pave the way for increased crop yields and food safety in environmentally friendly agriculture.


Assuntos
Sistemas CRISPR-Cas , Genoma de Planta , Melhoramento Vegetal/métodos , Marcação de Genes/métodos , Plantas/genética , Endonucleases/genética
20.
Exp Eye Res ; 235: 109639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659709

RESUMO

Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.


Assuntos
Ácidos Graxos Ômega-3 , Degeneração Macular , Feminino , Masculino , Humanos , Regulação para Baixo , Cromatografia Líquida , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa