Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(9): 3980-3989, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808949

RESUMO

Nanopesticides are considered to be a promising alternative strategy for enhancing bioactivity and delaying the development of pathogen resistance to pesticides. Here, a new type of nanosilica fungicide was proposed and demonstrated to control late blight by inducing intracellular peroxidation damage to Phytophthora infestans, the pathogen associated with potato late blight. Results indicated that the structural features of different silica nanoparticles were largely responsible for their antimicrobial activities. Mesoporous silica nanoparticles (MSNs) exhibited the highest antimicrobial activity with a 98.02% inhibition rate of P. infestans, causing oxidative stress responses and cell structure damage in P. infestans. For the first time, MSNs were found to selectively induce spontaneous excess production of intracellular reactive oxygen species in pathogenic cells, including hydroxyl radicals (•OH), superoxide radicals (•O2-), and singlet oxygen (1O2), leading to peroxidation damage in P. infestans. The effectiveness of MSNs was further tested in the pot experiments as well as leaf and tuber infection, and successful control of potato late blight was achieved with high plant compatibility and safety. This work provides new insights into the antimicrobial mechanism of nanosilica and highlights the use of nanoparticles for controlling late blight with green and highly efficient nanofungicides.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/fisiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle
2.
BMC Vet Res ; 19(1): 253, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031051

RESUMO

BACKGROUND: Wenzhou virus (WENV), a member of the Mammarenavirus genus in the Arenaviridae family, has been detected in wild rodents from eight provinces in China, including Zhejiang, Shandong, Hainan, Xinjiang, Hunan, Guangdong, Yunnan, and Jiangxi provinces, and some countries from Southeast Asia. The IgG-antibodies of WENV have been detected in both healthy populations and patients with unknown fever and respiratory symptoms. However, the potential harmfulness of WENV to humans has been underestimated due to mild symptoms after infection, similar to respiratory diseases. Thus, it is imperative to enhance the surveillance of WENV in wild rodents, particularly Rattus norvegicus, and continuously monitor its prevalence. RESULTS: From 2017 to 2021, a total of 390 wild rodents were collected from six provinces in the eastern and southern coastal areas, containing nine species of rats. Samples of each tissue were collected, and PCR amplified for identification. Four R. norvegicus samples were detected to be WENV-positive. No genomic sequence of WENV was detected in Rattus flavipectus, Rattus losea, Suncus murinus, Apodemus agrarius, Mus musculus, Microtus fortis, Micromys minutus, and Niviventer niviventer from Jiangsu, Zhejiang, Fujian, Hainan, Guangdong and Guangxi provinces. Three genomic sequences were identified to be WENV by phylogenetic analysis. The full-length sequences of HAIKOU-40 were amplified in R. norvegicus from Hainan, which showed a close relationship to Wufeng/ WFS, sharing 84.5-89.4% homology at the nucleotide level and 91.6-98.9% homology at the amino acid level. Phylogenetic analysis revealed that HAIKOU-40 formed an Asia-specific cluster with all WENVs and Loie River mammarenavirus (LORV), provisionally named Asian ancestry. This cluster has diverged earlier from the remaining mammarenavirus. The sequences obtained in Xiamen, Fujian province showed more than 90% nucleotide identities with WENV, which may be a strain of WENV. Additionally, the sequence of Wuxi-87 which was a positive sequence detected in Wuxi, Jiangsu province exhibited 83% nucleotide identity with Lassa virus (LASV). Further efforts will be made to isolate and identify this virus strain, verify the relationship between Wuxi-87 and LASV, and confirm whether R. norvegicus is a new host of LASV. CONCLUSIONS: In this study, we conducted a systematic examination of the prevalence of WENV among rodents on the southeast coast of China. Additionally, we characterized the genome of a newly discovered WENV strain, that confirmed the role of R. norvegicus in the transmission of WENV. This highlights the importance of investigating the prevalence of WENV in both wild rodents and humans.


Assuntos
Arenavirus , Roedores , Camundongos , Ratos , Humanos , Animais , Arenavirus/genética , Filogenia , China/epidemiologia , Genômica , Nucleotídeos
3.
BMC Public Health ; 23(1): 2231, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957620

RESUMO

BACKGROUND: The increasing number of pertussis cases worldwide over the past two decades has challenged healthcare workers, and the role of environmental factors and climate change cannot be ignored. The incidence of pertussis has increased dramatically in mainland China since 2015, developing into a serious public health problem. The association of meteorological factors on pertussis has attracted attention, but few studies have examined the impact of air pollutants on this respiratory disease. METHODS: In this study, we analyzed the relationship between outdoor air pollution and the pertussis incidence. The study period was from January 2013 to December 2018, and monthly air pollutant data and the monthly incidence of patients in 31 provinces of China were collected. Distributed lag nonlinear model (DLNM) analysis was used to estimate the associations between six air pollutants and monthly pertussis incidence in China. RESULTS: We found a correlation between elevated pertussis incidence and short-term high monthly CO2 and O3 exposure, with a 10 µg/m3 increase in NO2 and O3 being significantly associated with increased pertussis incidence, with RR values of 1.78 (95% CI: 1.29-2.46) and 1.51 (95% CI: 1.16-1.97) at a lag of 0 months, respectively. Moreover, PM2.5 and SO2 also played key roles in the risk of pertussis surged. These associations remain significant after adjusting for long-term trend, seasonality and collinearity. CONCLUSIONS: Overall, these data reinforce the evidence of a link between incidence and climate identified in regional and local studies. These findings also further support the hypothesis that air pollution is responsible for the global resurgence of pertussis. Based on this we suggest that public health workers should be encouraged to consider the risks of the environment when focusing on pertussis prevention and control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Coqueluche , Humanos , Incidência , Coqueluche/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , China/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio
4.
Pestic Biochem Physiol ; 143: 8-13, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183614

RESUMO

Phenazine-1-carboxylic acid (PCA) is a natural product that has been proven effective against a number of soil-borne fungal phytopathogens and registered for biofungicide against rice sheath blight in China. In order to improve the phloem mobility of phenazine-1-carboxylic acid (PCA), four PCA derivatives were designed and synthesized by conjugating PCA with l-alanine methyl ester, d-alanine methyl ester, l-alanine and d-alanine respectively. In vitro and planta bioassays results showed that conjugates L-PAM and D-PAM exhibited higher fungicidal activities against Rhizoctonia solani Kuhn than PCA while L-PA and D-PA were less active than PCA. The concentration of conjugates in Ricinus communis phloem sap was determined by HPLC. The results showed that only L-PA exhibited phloem mobility among these conjugates, and its concentration in Ricinus communis phloem sap increased with the increase of time (the maximum concentration was 12.69µM within 5h). However, the results of pot experiments showed that L-PA and other conjugates didn't exhibited the inhibition for the growth of Rhizoctonia solani Kuhn in the lower leaves after treatment in the upper leaves of rice seedlings. This may be due to the poor plant absorbility for them or their too little amount of accumulation in the lower leaves.


Assuntos
Fungicidas Industriais , Fusarium/efeitos dos fármacos , Floema/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Ricinus/efeitos dos fármacos , Alanina/análogos & derivados , Alanina/química , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/toxicidade , Fusarium/crescimento & desenvolvimento , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/toxicidade , Floema/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Ricinus/metabolismo , Ricinus/microbiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia
5.
Bioinorg Chem Appl ; 2023: 5898160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213220

RESUMO

Insects act as vectors to carry a wide range of bacteria and viruses that can cause multiple vector-borne diseases in humans. Diseases such as dengue fever, epidemic encephalitis B, and epidemic typhus, which pose serious risks to humans, can be transmitted by insects. Due to the absence of effective vaccines for most arbovirus, insect control was the main strategy for vector-borne diseases control. However, the rise of drug resistance in the vectors brings a great challenge to the prevention and control of vector-borne diseases. Therefore, finding an eco-friendly method for vector control is essential to combat vector-borne diseases. Nanomaterials with the ability to resist insects and deliver drugs offer new opportunities to increase agent efficacy compared with traditional agents, and the application of nanoagents has expanded the field of vector-borne disease control. Up to now, the reviews of nanomaterials mainly focus on biomedicines, and the control of insect-borne diseases has always been a neglected field. In this study, we analyzed 425 works of the literature about different nanoparticles applied on vectors in PubMed around keywords, such as"nanoparticles against insect," "NPs against insect," and "metal nanoparticles against insect." Through these articles, we focus on the application and development of nanoparticles (NPs) for vector control, discussing the lethal mechanism of NPs to vectors, which can explore the prospect of applying nanotechnology in the prevention and control of vectors.

6.
R Soc Open Sci ; 8(3): 201564, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33959326

RESUMO

Bacillus thuringiensis (Bt) has been regarded as a biopesticide with high efficiency and safety, while it still cannot be popularized and mass-produced because of its high production costs. In the present study, we aimed to develop a cost-effective biopesticide via the secondary use of discharged vegetable wastes as the raw fermentation medium, and the insecticidal activity of Bt strain prepared by this cheap cultivation approach was evaluated. The suitable carbon source, nitrogen source additives and optimal metal ions were screened by the single-factor test, and the optimal combination of additives was determined by orthogonal test and ANOVA analysis. We found that soluble starch (6 g l-1), soya bean meal (6 g l-1), Al3+ (0.4 g l-1) and Fe2+ (0.4 g l-1) were the optimal exogenous additives, and the optimal fermentation conditions were as follows: pH 7.0, temperature of 35°C and aeration of 80 ml/250 ml. Meanwhile, the bioactivity test results showed that the Bt strain prepared by cheap cultivation still exhibited a good insecticidal effect on Helicoverpa armigera compared with the standard LB medium. Collectively, our findings provided a new strategy for vegetable waste utilization with less environmental impact and reduced production cost.

7.
Adv Mater ; 32(48): e2005912, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124716

RESUMO

Functionalization of hydrogen-bonded organic frameworks (HOFs) for specific applications has been a long-lasting challenge in HOF materials. Here, an efficient way to integrate functional species in the HOF structure through constructing an anionic framework is presented. The obtained HOFs, taking PFC-33 (PFC = porous materials from FJIRSM,CAS) as an example, integrate a porphyrin photosensitizer as a porous backbone and a commercial biocide as counterions in the structure. The permanent channels and the electrostatic interaction between the framework and the counterions provide PFC-33 ion-responsive biocide-release behavior in various physiological environments, thus exhibiting synergistic photodynamic and chemical antimicrobial efficiency. The unbonded carboxyl groups residing on the HOF surface further allow for manipulating the interfacial interaction between the PFC-33 and the polymer matrix for membrane fabrication. Therefore, a polyHOF membrane with high stability, desired flexibility, and good permeability is obtained, which demonstrates noticeable bacterial inhibition toward Escherichia coli. This study may shed light on the functionalization of HOF materials for broad application potentials.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Membranas Artificiais , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Ligação de Hidrogênio , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa