Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047210

RESUMO

Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.


Assuntos
Polimorfismo de Nucleotídeo Único , Vírus de RNA , Abelhas/genética , Animais , Larva/genética , Filogenia , Vírus de RNA/genética
2.
Mol Cell Probes ; 52: 101542, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32105702

RESUMO

In order to interpret the molecular mechanisms that modulating the organism variations and selection signatures to drive adaptive evolutionary changes are indispensable goals in the new evolutionary ecological genetics. Here, we identified the gene locus associated to royal jelly production through whole-genome sequencing of the DNA from eight populations of honeybees. The analysis of the samples was composed of 120 individuals and each pointed extremely opposite trait values for a given phenotype. We identified functional single nucleotide polymorphisms (SNPs) candidate that might be essential in regulating the phenotypic traits of honeybee populations. Moreover, selection signatures were investigated using pooling sequencing of eight distinct honeybee populations, and the results provided the evidence of signatures of recent selection among populations under different selection objectives. Furthermore, gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that selected genes were potentially involved in several biological processes and molecular functioning, which could directly or indirectly influence the production of royal jelly. Our findings can be used to understand the genomic signatures, as well as implicate a profound glance on genomic regions that control the production trait of royal jelly in honey bees.


Assuntos
Abelhas/genética , Ácidos Graxos/biossíntese , Genética Populacional , Seleção Genética , Animais , Geografia , Mutação INDEL/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
3.
Pestic Biochem Physiol ; 156: 36-43, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027579

RESUMO

Declines in honey bee populations represent a worldwide concern. The widespread use of neonicotinoid insecticides has been one of the factors linked to these declines. Sublethal doses of a neonicotinoid insecticide, imidacloprid, has been reported to cause olfactory learning deficits in honey bees via impairment of the target organ, the brain. In the present study, olfactory learning of honey bees was compared between controls and imidacloprid-treated bees. The brains of imidacloprid-treated and control bees were used for comparative transcriptome analysis by RNA-Seq to elucidate the effects of imidacloprid on honey bee learning capacity. The results showed that the learning performance of imidacloprid-treated bees was significantly impaired in comparison with control bees after chronic oral exposure to imidacloprid (0.02 ng/µl) for 11 days. Gene expression profiles between imidacloprid treatment and the control revealed that 131 genes were differentially expressed, of which 130 were downregulated in imidacloprid-treated bees. Validation of the RNA-Seq data using qRT-PCR showed that the results of qRT-PCR and RNA-Seq exhibited a high level of agreement. Gene ontology annotation indicated that the oxidation-reduction imbalance might exist in the brain of honey bees due to oxidative stress induced by imidacloprid exposure. KEGG and ingenuity pathway analysis revealed that transient receptor potential and Arrestin 2 in the phototransduction pathway were significantly downregulated in imidacloprid-treated bees, and that five downregulated genes have causal effects on behavioral response inhibition in imidacloprid-treated bees. Our results suggest that downregulation of brain genes involved in immune, detoxification and chemosensory responses may result in decreased olfactory learning capabilities in imidacloprid-treated bees.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Abelhas , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Oxirredução/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
4.
Mol Genet Genomics ; 293(1): 237-248, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29043489

RESUMO

Honey bee is a social insect. Its colony is mainly coordinated by the chemical signals such as pheromones produced by queen or brood. Correspondingly, the worker bee developed numerous complicated olfactory sensilla in antennae for detection of these colony chemical signals and nectar/pollen signals in foraging. With the normal development of new emerged workers, young adults (nurse bee) worked in colony at the first 2-3 weeks and then followed by the foraging activity outside of the hive, which give rise to great change of the surrounding chemical signals. However, the olfactory adaption mechanism of worker bee in these processes of behavioral development is still unclear. In this study, we conducted a comprehensive and quantitative analysis of gene expression in Apis mellifera antenna of newly emerged workers, nurses and foragers using transcriptome analysis. Meanwhile, we constructed experimental colonies to collect age-matched samples, which were used to determine whether task is the principal determinant of differential expression. RNA sequencing and quantitative real-time polymerase chain reaction revealed that 6 and 14 genes were closely associated with nurse and forager behaviors, respectively. Furthermore, a broad dynamic range of chemosensory gene families and candidate odorant degrading enzymes were analyzed at different behavior statuses. We firstly reported genes associated with nursing/foraging behavior from antennae and the variations of expression of genes belonging to various olfactory gene families at different development stages. These results not only could contribute to elucidating the relationship between olfactory and behavior-related changes, but also provide a new perspective into the molecular mechanism underlying honey bee division of labor.


Assuntos
Abelhas/genética , Proteínas de Insetos/genética , Feromônios/genética , Transcriptoma/genética , Animais , Antenas de Artrópodes/fisiologia , Abelhas/fisiologia , Comportamento Animal , Feminino , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA
5.
Pestic Biochem Physiol ; 140: 1-8, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755688

RESUMO

Acute toxicities (LD50s) of imidacloprid and clothianidin to Apis mellifera and A. cerana were investigated. Changing patterns of immune-related gene expressions and the activities of four enzymes between the two bee species were compared and analyzed after exposure to sublethal doses of insecticides. Results indicated that A. cerana was more sensitive to imidacloprid and clothianidin than A. mellifera. The acute oral LD50 values of imidacloprid and clothianidin for A. mellifera were 8.6 and 2.0ng/bee, respectively, whereas the corresponding values for A. cerana were 2.7 and 0.5ng/bee. The two bee species possessed distinct abilities to mount innate immune response against neonicotinoids. After 48h of imidacloprid treatment, carboxylesterase (CCE), prophenol oxidase (PPO), and acetylcholinesterase (AChE) activities were significantly downregulated in A. mellifera but were upregulated in A. cerana. Glutathione-S-transferase (GST) activity was significantly elevated in A. mellifera at 48h after exposure to imidacloprid, but no significant change was observed in A. cerana. AChE was downregulated in both bee species at three different time points during clothianidin exposure, and GST activities were upregulated in both species exposed to clothianidin. Different patterns of immune-related gene expression and enzymatic activities implied distinct detoxification and immune responses of A. cerana and A. mellifera to imidacloprid and clothianidin.


Assuntos
Abelhas/efeitos dos fármacos , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Tiazóis/toxicidade , Animais , Guanidinas/química , Antígenos de Histocompatibilidade , Inseticidas/química , Neonicotinoides/química , Nitrocompostos/química , Especificidade da Espécie , Tiazóis/química
6.
Genet Mol Biol ; 40(4): 781-789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981563

RESUMO

China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

7.
IEEE Trans Cybern ; 54(4): 2483-2494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37099469

RESUMO

The relational triplet is a format to represent relational facts in the real world, which consists of two entities and a semantic relation between these two entities. Since the relational triplet is the essential component in a knowledge graph (KG), extracting relational triplets from unstructured texts is vital for KG construction and has attached increasing research interest in recent years. In this work, we find that relation correlation is common in real life and could be beneficial for the relational triplet extraction task. However, existing relational triplet extraction works neglect to explore the relation correlation that bottlenecks the model performance. Therefore, to better explore and take advantage of the correlation among semantic relations, we innovatively utilize a three-dimension word relation tensor to describe relations between words in a sentence. Then, we treat the relation extraction task as a tensor learning problem and propose an end-to-end tensor learning model based on Tucker decomposition. Compared with directly capturing correlation among relations in a sentence, learning the correlation of elements in a three-dimension word relation tensor is more feasible and could be addressed through tensor learning methods. To verify the effectiveness of the proposed model, extensive experiments are also conducted on two widely used benchmark datasets, that is, NYT and WebNLG. Results show that our model outperforms the state-of-the-art by a large margin of F1 scores, such as the developed model has an improvement of 3.2% on the NYT dataset compared to the state-of-the-art. Source codes and data can be found at https://github.com/Sirius11311/TLRel.git.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38995707

RESUMO

Reasoning over temporal knowledge graphs (TKGs) is a challenging task that requires models to infer future events based on past facts. Currently, subgraph-based methods have become the state-of-the-art (SOTA) techniques for this task due to their superior capability to explore local information in knowledge graphs (KGs). However, while previous methods have been effective in capturing semantic patterns in TKG, they are hard to capture more complex topological patterns. In contrast, path-based methods can efficiently capture relation paths between nodes and obtain relation patterns based on the order of relation connections. But subgraphs can retain much more information than a single path. Motivated by this observation, we propose a new subgraph-based approach to capture complex relational patterns. The method constructs candidate-oriented relational graphs to capture the local structure of TKGs and introduces a variant of a graph neural network model to learn the graph structure information between query-candidate pairs. In particular, we first design a prior directed temporal edge sampling method, which is starting from the query node and generating multiple candidate-oriented relational graphs simultaneously. Next, we propose a recursive propagation architecture that can encode all relational graphs in the local structures in parallel. Additionally, we introduce a self-attention mechanism in the propagation architecture to capture the query's preference. Finally, we design a simple scoring function to calculate the candidate nodes' scores and generate the model's predictions. To validate our approach, we conduct extensive experiments on four benchmark datasets (ICEWS14, ICEWS18, ICEWS0515, and YAGO). Experiments on four benchmark datasets demonstrate that our proposed approach possesses stronger inference and faster convergence than the SOTA methods. In addition, our method provides a relational graph for each query-candidate pair, which offers interpretable evidence for TKG prediction results.

9.
J Cardiovasc Transl Res ; 16(4): 758-767, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715820

RESUMO

Cardiomyocyte contractility is the crucial feature of heart function. Quantifying cardiomyocyte contraction in vitro is essential for disease phenotype characterization, mechanism illumination, and drug screening. Although many experimental methods have been employed to determine contraction dynamics in vitro, a time-saving and easy-to-use software is still needed to be developed. We presented a reliable tool, named MyocytoBeats, to measure cardiomyocyte contraction by processing recorded videos. Analysis results by MyocytoBeats of various experimental models have shown a significant linear relationship with another validated software. We also performed pharmacology screen in the platform, and astragaloside IV was identified to stabilize the frequency and amplitude of cardiomyocyte in the arrhythmia model. MyocytoBeats is a high-performance tool for generating cardiomyocyte contraction data of vitro study and shows a great potential in cardiac pharmacology study.


Assuntos
Miócitos Cardíacos , Software , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Contração Miocárdica , Arritmias Cardíacas
10.
Genes (Basel) ; 14(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37239360

RESUMO

MicroRNAs (miRNAs) play a vital role in the nerve regulation of honey bees (Apis mellifera). This study aims to investigate the differences in expression of miRNAs in a honey bee's brain for olfactory learning tasks and to explore their potential role in a honey bee's olfactory learning and memory. In this study, 12 day old honey bees with strong and weak olfactory performances were utilized to investigate the influence of miRNAs on olfactory learning behavior. The honey bee brains were dissected, and a small RNA-seq technique was used for high-throughput sequencing. The data analysis of the miRNA sequences revealed that 14 differentially expressed miRNAs (DEmiRNAs) between the two groups, strong (S) and weak (W), for olfactory performance in honey bees were identified, which included seven up-regulated and seven down-regulated. The qPCR verification results of the 14 miRNAs showed that four miRNAs (miR-184-3p, miR-276-3p, miR-87-3p, and miR-124-3p) were significantly associated with olfactory learning and memory. The target genes of these DEmiRNAs were subjected to the GO database annotation and KEGG pathway enrichment analyses. The functional annotation and pathway analysis showed that the neuroactive ligand-receptor interaction pathway, oxidative phosphorylation, biosynthesis of amino acids, pentose phosphate pathway, carbon metabolism, and terpenoid backbone biosynthesis may be a great important pathway related to olfactory learning and memory in honey bees. Our findings together further explained the relationship between olfactory performance and the brain function of honey bees at the molecular level and provides a basis for further study on miRNAs related to olfactory learning and memory in honey bees.


Assuntos
Aprendizagem , MicroRNAs , Abelhas/genética , Animais , Encéfalo/metabolismo , Condicionamento Clássico , MicroRNAs/genética , MicroRNAs/metabolismo , Olfato/genética
11.
Insects ; 13(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35206685

RESUMO

The ethological study of dance behaviour has yielded some findings since Karl Von Frisch discovered and interpreted the 'dance language' in the honey bee. However, the function and role of long non-coding RNAs on dance behaviour are hardly known until now. In this study, the differential expression patterns of lncRNAs in the brains of waggling dancers and non-dancing bees were analysed by RNA sequencing. Furthermore, lncRNA-mRNA association analysis was constructed to decipher the waggle dance. The results of RNA sequencing indicated that a total of 2877 lncRNAs and 9647 mRNAs were detected from honey bee brains. Further comparison analysis displayed that two lncRNAs, MSTRG.6803.3 and XR_003305156.1, may be involved in the waggle dance. The lncRNA-mRNA association analysis showed that target genes of differentially expressed lncRNAs in the brains between waggling dancers and non-dancing bees were mainly annotated in biological processes related to metabolic process, signalling and response to stimulus and in molecular function associated with signal transducer activity, molecular transducer activity and binding. Nitrogen metabolism was likely implicated in the modulation of the waggle dance. Our findings contribute to further understanding the occurrence and development of waggle dance.

12.
Insects ; 13(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36354812

RESUMO

The honey bee (Apis mellifera) plays vital ecological roles in the pollination of crops and the maintenance of ecological balance, and adult honey bees may be exposed to exogenous chemicals including heavy metals during their foraging activities. Cadmium (Cd) is regarded as a nonessential toxic metal and is readily accumulated in plants; honey bees can therefore acquire Cd through the collection of contaminated nectar. In the present study, honey bees were chronically exposed to Cd to investigate the effects of sublethal cadmium doses on the olfactory learning and brain gene expression profiles of honey bees. The results showed that Cd-treated bees exhibited significantly impaired olfactory learning performances in comparison with control bees. Moreover, the head weight was significantly lower in Cd-treated bees than in control bees after chronic exposure to Cd. Gene expression profiles between the Cd treatment and the control revealed that 79 genes were significantly differentially expressed. Genes encoding chemoreceptors and olfactory proteins were downregulated, whereas genes involved in response to oxidative stress were upregulated in Cd-treated bees. The results suggest that Cd exposure exerts oxidative stress in the brain of honey bees, and the dysregulated expression of genes encoding chemoreceptors, olfactory proteins, and cytochrome P450 enzymes is probably associated with impaired olfactory learning in honey bees.

13.
PLoS One ; 17(2): e0262441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139088

RESUMO

Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.


Assuntos
Olfato
14.
Science ; 376(6592): 508-512, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482873

RESUMO

The biological bases of wanting have been characterized in mammals, but whether an equivalent wanting system exists in insects remains unknown. In this study, we focused on honey bees, which perform intensive foraging activities to satisfy colony needs, and sought to determine whether foragers leave the hive driven by specific expectations about reward and whether they recollect these expectations during their waggle dances. We monitored foraging and dance behavior and simultaneously quantified and interfered with biogenic amine signaling in the bee brain. We show that a dopamine-dependent wanting system is activated transiently in the bee brain by increased appetite and individual recollection of profitable food sources, both en route to the goal and during waggle dances. Our results show that insects share with mammals common neural mechanisms for encoding wanting of stimuli with positive hedonic value.


Assuntos
Comunicação Animal , Dopamina , Animais , Abelhas , Encéfalo , Alimentos , Mamíferos , Transdução de Sinais
15.
Insects ; 12(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680723

RESUMO

CRISPR/Cas9, a predominant gene-editing tool, has been utilised to dissect the gene function in Apis mellifera. However, only the genomic region containing NGG PAM could be recognised and edited in A. mellifera, seriously hampering the application of CRISPR technology in honeybees. In this study, we carried out the bioinformatics analysis for genome-wide targeting sites of NGG, TTN, and NNGRRT to determine the potential expansion of the SpCas9, SaCas9, Cpf1, and it was found that the targetable spectrum of the CRISPR editing system could be markedly extended via the integrated gene manipulation system. Meanwhile, the single guide RNA (sgRNA)/crRNA of different novel gene editing systems and the corresponding CRISPR proteins were co-injected into honeybee embryos, and their feasibility was tested in A. mellifera. The sequencing data revealed that both SaCas9 and Cpf1 are capable of mediating mutation in A. mellifera, albeit with relatively lower mutagenesis rates for Cpf1 and unstable editing for SaCas9. To our knowledge, our results provide the first demonstration that SaCas9 and Cpf1 can function to induce genome sequence alternation, which extended the editing scope to the targets with TTN and NNGRRT and enabled CRISPR-based genome research in a broader range in A. mellifera.

16.
Insects ; 12(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442270

RESUMO

In honey bees, complementary sex determiner (csd) is the primary signal of sex determination. Its allelic composition is heterozygous in females, and hemizygous or homozygous in males. To explore the transcriptome differences after sex differentiation between males and females, with genetic differences excluded, csd in fertilized embryos was knocked out by CRISPR/Cas9. The diploid mutant males at 24 h, 48 h, 72 h, and 96 h after egg laying (AEL) and the mock-treated females derived from the same fertilized queen were investigated through RNA-seq. Mutations were detected in the target sequence in diploid mutants. The diploid mutant drones had typical male morphological characteristics and gonads. Transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, such as takeout and apolipophorin-III-like protein (A4), had higher expressions in the diploid mutant males. Weighted gene co-expression network analysis (WGCNA) indicated that there might be interactions between csd and fruitless (fru), feminizer (fem) and hexamerin 70c (hex70c), transformer-2 (tra2) and troponin T (TpnT). The information provided by this study will benefit further research on the sex dimorphism and development of honey bees and other insects in Hymenoptera.

17.
J Insect Physiol ; 132: 104264, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081960

RESUMO

Visible genetic markers are critical to gene function studies using genome editing technology in insects. However, there is no report about visible phenotypic markers in Apis mellifera, which extremely influences the application of genomic editing in honey bees. Here, we cloned and characterized the Amyellow-y gene in A. mellifera. Stage expression profiles showed that Amyellow-y gene was highly expressed in 2-, 4-day-old pupae, and newly emerged bees, and a high expression level was detected in the leg, thorax, wing and sting. To understand its functional role in pigmentation, Amyellow-y edited honeybees were created using CRISPR/Cas9, and it was found that the black pigment was decreased in the cuticle of mosaic workers and mutant drones. In particular, mutant drones manifested an overall appearance of yellowish cuticle in the body and appendages, including antennae, wings and legs, indicating that mutagenesis induced by disruption of Amyellow-y with CRISPR/Cas9 are heritable. Furthermore, the expression levels of genes associated with melanin pigmentation was investigated in mutant and wild-type drones using quantitative reverse transcription PCR. Transcription levels of Amyellow-y and aaNAT decreased markedly in mutant drones than that in wild-type ones, whereas laccase 2 was significantly up-regulated. Our results provide the first evidence, to our knowledge, that CRISPR/Cas9 edited G1 mutant drones of A. mellifera have a dramatic body pigmentation defect that can be visualized in adults, suggesting that Amyellow-y may serve as a promising visible phenotypic marker for genome editing in honey bees.


Assuntos
Abelhas/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcadores Genéticos , Animais , Abelhas/metabolismo , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Melaninas , Pigmentação/genética , Fatores de Transcrição/genética
18.
Insects ; 11(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640515

RESUMO

The fungus Ascosphaera apis, an obligate fungal pathogen of honey bee brood, causes chalkbrood disease in honey bee larvae worldwide. Biological characteristics of the fungal pathogen and the molecular interactions between A. apis and honey bees have been studied extensively. However, little is known about the effects of A. apis infection on antioxidant enzyme activities and metabolic profiles of the gut of honey bee larvae. In this study, sandwich enzyme-linked immunosorbent assay and LC-MS based untargeted metabolomic analysis were employed to determine the changes in the specific activities of antioxidant enzymes and the metabolomic profiles in gut tissues of A. apis-infected larvae (105 A. apis spores per larva) and controls. Results showed that specific activities of superoxide dismutase, catalase and glutathione S-transferase were significantly higher in the guts of the control larvae than in the guts of the A. apis-infected larvae. The metabolomic data revealed that levels of 28 and 52 metabolites were significantly higher and lower, respectively, in the guts of A. apis-infected larvae than in the guts of control larvae. The 5-oxo-ETE level in the infected larvae was two times higher than that in the control larvae. Elevated 5-oxo-ETE levels may act as a potential metabolic biomarker for chalkbrood disease diagnosis, suggesting that A. apis infection induced obvious oxidative stress in the honey bee larvae. The levels of metabolites such as taurine, docosahexaenoic acid, and L-carnitine involved in combating oxidative stress were significantly decreased in the gut of A. apis-infected larvae. Overall, our results suggest that A. apis infection may compromise the ability of infected larvae to cope with oxidative stress, providing new insight into changing patterns of physiological responses to A. apis infection in honey bee larvae by concurrent use of conventional biochemical assays and untargeted metabolomics.

19.
J Agric Food Chem ; 66(4): 871-880, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29322776

RESUMO

To improve our understanding of the disturbed metabolic pathways and cellular responses triggered by honeybee venom stimulation, we compared the changes in serum metabolites in rats, either stimulated or not by honeybee venom, by performing 1H nuclear magnetic resonance (NMR) spectrometry-based metabonomics to identify potential biomarkers. In this study, 65 metabolites were structurally confirmed and quantified and the following results were obtained. First, by pattern recognition analysis, 14 metabolites were selected as potential biomarkers 3 h after venom stimulation. Second, metabolic pathway analysis showed that methane metabolism, glyoxylate and dicarboxylate metabolism, tricarboxylic acid cycle, glycine, serine, and threonine metabolism, arginine and proline metabolism were affected. Finally, the time-dependent metabolic modifications indicated that rats could recover without medical treatment 24 h after venom stimulation. In summary, this new insight into the changes in serum metabolites in rats after honeybee venom stimulation has enhanced our understanding of the response of an organism to honeybee venom.


Assuntos
Venenos de Abelha/imunologia , Venenos de Abelha/farmacologia , Hipersensibilidade/sangue , Metabolômica/métodos , Animais , Biomarcadores/sangue , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Ratos , Ratos Sprague-Dawley
20.
Int J Genomics ; 2018: 5702061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850474

RESUMO

The forkhead box (Fox) gene family, one of the most important families of transcription factors, participates in various biological processes. However, Fox genes in Hymenoptera are still poorly known. In this study, 14 Fox genes were identified in the genome of Apis cerana. In addition, 16 (Apis mellifera), 13 (Apis dorsata), 16 (Apis florea), 17 (Bombus terrestris), 16 (Bombus impatiens), and 18 (Megachile rotundata) Fox genes were identified in their genomes, respectively. Phylogenetic analyses suggest that FoxA is absent in the genome of A. dorsata genome. Similarly, FoxG is missing in the genomes A. cerana and A. dorsata. Temporal expression profiles obtained by quantitative real-time PCR revealed that Fox genes have distinct expression patterns in A. cerana, especially for three genes ACSNU03719T0 (AcFoxN4), ACSNU05765T0 (AcFoxB), and ACSNU07465T0 (AcFoxL2), which displayed high expression at the egg stage. Tissue expression patterns showed that FoxJ1 is significantly higher in the antennae of A. cerana and A. mellifera compared to other tissues. These results may facilitate a better understanding of the potential physiological functions of the Fox gene family in A. cerana and provide valuable information for a comprehensive functional analysis of the Fox gene family in Hymenopterans.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa