Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 132(4): 869-879, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37256773

RESUMO

BACKGROUND AND AIMS: The relative contributions of C3 photosynthesis and crassulacean acid metabolism (CAM) during the earliest stages of development were investigated to assess how much each might contribute to cactus pear (Opuntia ficus-indica) productivity. METHODS: The developmental progression of C3 photosynthesis and CAM was assessed in seedlings and daughter cladodes of mature plants by titratable acidity, δ13C isotopic values and diel gas exchange measurements. KEY RESULTS: Nocturnal acidification was observed in seedling cladodes and cotyledons at the earliest stages of development and became highly significant by 75 days of development. Seedling cotyledons showed mean δ13C values of -21.4 and -17.1 ‰ at 30 and 100 days of age, respectively. Seedling cladodes showed mean δ13C values of -19.4 and -14.5 ‰ at 30 and 100 days of age, respectively. These values are typical of CAM plants. Net CO2 assimilation was negative, then occurred in both the day and the night, with nighttime fixation becoming predominant once the primary cladode reached 5 cm in size. Emergent daughter cladodes growing on mature plants showed nocturnal titratable acidity at the earliest stages of development, which became significant when daughter cladodes were >2.5-5 cm in height. Emergent daughter cladodes showed mean δ13C values of -14.5 to -15.6 ‰, typical of CAM plants. CO2 assimilation studies revealed that net CO2 uptake was negative in daughter cladodes <12 cm in length, but then exhibited net positive CO2 assimilation in both the day and the night, with net nocturnal CO2 assimilation predominating once the daughter cladode grew larger. CONCLUSIONS: Developing O. ficus-indica primary and daughter cladodes begin as respiring sink tissues that transition directly to performing CAM once net positive CO2 fixation is observed. Overall, these results demonstrate that CAM is the primary form of photosynthetic carbon assimilation for O. ficus-indica even at the earliest stages of seedling or daughter cladode development.


Assuntos
Metabolismo Ácido das Crassuláceas , Opuntia , Opuntia/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Plântula/metabolismo
2.
J Exp Bot ; 70(22): 6549-6559, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597061

RESUMO

Plants that use crassulacean acid metabolism (CAM) have the potential to meet growing agricultural resource demands using land that is considered unsuitable for many common crop species. Agave americana L., an obligate CAM plant, has potential as an advanced biofuel crop in water-limited regions, and has greater cold tolerance than other high-yielding CAM species, but physiological tolerances have not been completely resolved. We developed a model to estimate the growth responses of A. americana to water input, temperature, and photosynthetically active radiation (PAR). The photosynthetic response to PAR was determined experimentally by measuring the integrated leaf gas exchange over 24 h after acclimation to six light levels. Maximum CO2 fixation rates were observed at a PAR intensity of 1250 µmol photons m-2 s-1. Growth responses of A. americana to water and temperature were also determined, and a monthly environmental productivity index (EPI) was derived that can be used to predict biomass growth. The EPI was calculated as the product of water, temperature, and light indices estimated for conditions at a site in Maricopa (Arizona), and compared with measured biomass at the same site (where the first field trial of A. americana as a crop was completed). The monthly EPI summed over the lifetime of multi-year crops was highly correlated with the average measured biomass of healthy 2- and 3-year-old plants grown in the field. The resulting relationship between EPI and biomass provides a simple model for estimating the production of A. americana at a monthly time step according to light, temperature, and precipitation inputs, and is a useful tool for projecting the potential geographic range of this obligate CAM species in future climatic conditions.


Assuntos
Agave/crescimento & desenvolvimento , Biocombustíveis , Produtos Agrícolas/crescimento & desenvolvimento , Clima Desértico , Modelos Biológicos , Agave/efeitos da radiação , Biomassa , Produtos Agrícolas/efeitos da radiação , Luz , Temperatura , Água
3.
J Exp Bot ; 70(22): 6521-6537, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31087091

RESUMO

The potential for crassulacean acid metabolism (CAM) to support resilient crops that meet demands for food, fiber, fuel, and pharmaceutical products far exceeds current production levels. This review provides background on five families of plants that express CAM, including examples of many species within these families that have potential agricultural uses. We summarize traditional uses, current developments, management practices, environmental tolerance ranges, and economic values of CAM species with potential commercial applications. The primary benefit of CAM in agriculture is high water use efficiency that allows for reliable crop yields even in drought conditions. Agave species, for example, grow in arid conditions and have been exploited for agricultural products in North and South America for centuries. Yet, there has been very little investment in agricultural improvement for most useful Agave varieties. Other CAM species that are already traded globally include Ananas comosus (pineapple), Aloe spp., Vanilla spp., and Opuntia spp., but there are far more with agronomic uses that are less well known and not yet developed commercially. Recent advances in technology and genomic resources provide tools to understand and realize the tremendous potential for using CAM crops to produce climate-resilient agricultural commodities in the future.


Assuntos
Agricultura/métodos , Ácidos Carboxílicos/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Genômica
4.
Curr Opin Plant Biol ; 49: 74-85, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284077

RESUMO

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to climates with seasonal or intermittent water limitations. CAM plants display a plastic continuum in the extent to which species engage in net nocturnal CO2 uptake that ranges from 0 to 100%. CAM plants also display diverse enzyme and organic acid and carbohydrate storage systems, which likely reflect the multiple, independent evolutionary origins of CAM. CAM is often accompanied by a diverse set of anatomical traits, such as tissue succulence and water-storage and water-capture strategies to attenuate drought. Other co-adaptive traits, such as thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, and shallow rectifier-like roots limit water loss under conditions of water deficit. Recommendations for future research efforts to better explore and understand the diversity of traits associated with CAM and CAM Biodesign efforts are presented.


Assuntos
Dióxido de Carbono , Fotossíntese , Secas , Plantas , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa