Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38261971

RESUMO

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Assuntos
Proteínas de Ciclo Celular , Antígeno Nuclear de Célula em Proliferação , Proteínas de Schizosaccharomyces pombe , Sítios de Ligação , Replicação do DNA , Proteínas Intrinsicamente Desordenadas/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ribonucleotídeo Redutases/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
2.
Cell Mol Life Sci ; 79(9): 484, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974206

RESUMO

Ubiquitin is a small, globular protein that is conjugated to other proteins as a posttranslational event. A palette of small, folded domains recognizes and binds ubiquitin to translate and effectuate this posttranslational signal. Recent computational studies have suggested that protein regions can recognize ubiquitin via a process of folding upon binding. Using peptide binding arrays, bioinformatics, and NMR spectroscopy, we have uncovered a disordered ubiquitin-binding motif that likely remains disordered when bound and thus expands the palette of ubiquitin-binding proteins. We term this motif Disordered Ubiquitin-Binding Motif (DisUBM) and find it to be present in many proteins with known or predicted functions in degradation and transcription. We decompose the determinants of the motif showing it to rely on features of aromatic and negatively charged residues, and less so on distinct sequence positions in line with its disordered nature. We show that the affinity of the motif is low and moldable by the surrounding disordered chain, allowing for an enhanced interaction surface with ubiquitin, whereby the affinity increases ~ tenfold. Further affinity optimization using peptide arrays pushed the affinity into the low micromolar range, but compromised context dependence. Finally, we find that DisUBMs can emerge from unbiased screening of randomized peptide libraries, featuring in de novo cyclic peptides selected to bind ubiquitin chains. We suggest that naturally occurring DisUBMs can recognize ubiquitin as a posttranslational signal to act as affinity enhancers in IDPs that bind to folded and ubiquitylated binding partners.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas , Sequência de Aminoácidos , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo , Ubiquitina/metabolismo
3.
Nucleic Acids Res ; 47(4): 1671-1691, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30566651

RESUMO

Fission yeast, Schizosaccharomyces pombe, is an attractive model organism for transcriptional and chromatin biology research. Such research is contingent on accurate annotation of transcription start sites (TSSs). However, comprehensive genome-wide maps of TSSs and their usage across commonly applied laboratory conditions and treatments for S. pombe are lacking. To this end, we profiled TSS activity genome-wide in S. pombe cultures exposed to heat shock, nitrogen starvation, hydrogen peroxide and two commonly applied media, YES and EMM2, using Cap Analysis of Gene Expression (CAGE). CAGE-based annotation of TSSs is substantially more accurate than existing PomBase annotation; on average, CAGE TSSs fall 50-75 bp downstream of PomBase TSSs and co-localize with nucleosome boundaries. In contrast to higher eukaryotes, dispersed TSS distributions are not common in S. pombe. Our data recapitulate known S. pombe stress expression response patterns and identify stress- and media-responsive alternative TSSs. Notably, alteration of growth medium induces changes of similar magnitude as some stressors. We show a link between nucleosome occupancy and genetic variation, and that the proximal promoter region is genetically diverse between S. pombe strains. Our detailed TSS map constitutes a central resource for S. pombe gene regulation research.


Assuntos
Schizosaccharomyces/genética , Estresse Fisiológico/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Cromatina/genética , Mapeamento Cromossômico , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/efeitos dos fármacos , Genoma Fúngico/genética , Peróxido de Hidrogênio/farmacologia , Nitrogênio/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Inanição/genética , Estresse Fisiológico/efeitos dos fármacos
4.
Cell Mol Life Sci ; 76(24): 4923-4943, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31134302

RESUMO

Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Ligação a DNA/química , DNA/química , Antígeno Nuclear de Célula em Proliferação/química , DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Espectroscopia de Ressonância Magnética , Antígeno Nuclear de Célula em Proliferação/genética , Conformação Proteica
5.
EMBO Rep ; 17(5): 753-68, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902262

RESUMO

Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.


Assuntos
Regulação da Expressão Gênica , Retroelementos , Sítio de Iniciação de Transcrição , Sequência de Bases , Catálise , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Modelos Biológicos , Mutação , Nucleossomos , Fenótipo , Estresse Fisiológico , Sequências Repetidas Terminais , Ativação Transcricional
6.
Genes Dev ; 24(23): 2705-16, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123655

RESUMO

Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed the DNA damage sensitivity and the reduced HR efficiency associated with loss of ddb1(+) or cdt2(+). Furthermore, we demonstrate a role for nucleotide synthesis in postsynaptic gap filling of resected ssDNA ends during HR repair. Finally, we define a role for Rad3 (ATR) in nucleotide synthesis and HR through increasing Cdt2 nuclear levels in response to DNA damage. Our findings support a model in which break-induced Rad3 and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent Spd1 degradation and RNR activation promotes postsynaptic ssDNA gap filling during HR repair.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Quinase do Ponto de Checagem 2 , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Deleção de Genes , Nucleotídeos/metabolismo , Recombinação Genética , Ribonucleotídeo Redutases/metabolismo
7.
Genes Dev ; 24(11): 1145-59, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20516199

RESUMO

The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and by small inhibitory proteins that associate with the R1 catalytic subunit. In addition, the subcellular localization of the R2 subunit is regulated through the cell cycle and in response to DNA damage. We show that the fission yeast small RNR inhibitor Spd1 is intrinsically disordered and regulates R2 nuclear import, as predicted by its relationship to Saccharomyces cerevisiae Dif1. We demonstrate that Spd1 can interact with both R1 and R2, and show that the major restraint of RNR in vivo by Spd1 is unrelated to R2 subcellular localization. Finally, we identify a new behavior for RNR complexes that potentially provides yet another mechanism to regulate dNTP synthesis via modulation of RNR complex architecture.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Ribonucleotídeo Redutases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Alanina/metabolismo , Proteínas de Ciclo Celular/genética , Mutagênese , Subunidades Proteicas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
J Cell Sci ; 127(Pt 11): 2460-70, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24652833

RESUMO

In yeasts, small intrinsically disordered proteins (IDPs) modulate ribonucleotide reductase (RNR) activity to ensure an optimal supply of dNTPs for DNA synthesis. The Schizosaccharomyces pombe Spd1 protein can directly inhibit the large RNR subunit (R1), import the small subunit (R2) into the nucleus and induce an architectural change in the R1-R2 holocomplex. Here, we report the characterization of Spd2, a protein with sequence similarity to Spd1. We show that Spd2 is a CRL4(Cdt2)-controlled IDP that functions together with Spd1 in the DNA damage response and in modulation of RNR architecture. However, Spd2 does not regulate dNTP pools and R2 nuclear import. Furthermore, deletion of spd2 only weakly suppresses the Rad3(ATR) checkpoint dependency of CRL4(Cdt2) mutants. However, when we raised intracellular dNTP pools by inactivation of RNR feedback inhibition, deletion of spd2 could suppress the checkpoint dependency of CRL4(Cdt2) mutant cells to the same extent as deletion of spd1. Collectively, these observations suggest that Spd1 on its own regulates dNTP pools, whereas in combination with Spd2 it modulates RNR architecture and sensitizes cells to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Alostérica/genética , Sequência de Aminoácidos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA/genética , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Dados de Sequência Molecular , Mutação/genética , Nucleotidases/metabolismo , Conformação Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Homologia de Sequência de Aminoácidos
9.
J Cell Sci ; 126(Pt 21): 4985-94, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986475

RESUMO

Cullin4, Ddb1 and Cdt2 are core subunits of the ubiquitin ligase complex CRL4(Cdt2), which controls genome stability by targeting Spd1 for degradation during DNA replication and repair in fission yeast. Spd1 has an inhibitory effect on ribonucleotide reductase (RNR), the activity of which is required for deoxynucleotide (dNTP) synthesis. The failure to degrade Spd1 in mutants where CRL4(Cdt2) is defective leads to DNA integrity checkpoint activation and dependency. This correlates with a lower dNTP pool. Pools are restored in a spd1-deleted background and this also suppresses checkpoint activation and dependency. We hypothesized that fission yeast with RNR hyperactivity would display a mutator phenotype on their own, but also possibly repress aspects of the phenotype associated with the inability to target Spd1 for degradation. Here, we report that a mutation in the R1 subunit of ribonucleotide reductase cdc22 (cdc22-D57N), which alleviated allosteric feedback inhibition, caused a highly elevated dNTP pool that was further increased by deleting spd1. The Δspd1 cdc22-D57N double mutant had elevated mutation rates and was sensitive to damaging agents that cause DNA strand breaks, demonstrating that Spd1 can protect the genome when dNTP pools are high. In ddb1-deleted cells, cdc22-D57N also potently elevated RNR activity, but failed to allow cell growth independently of the intact checkpoint. Our results provide evidence that excess Spd1 interferes with other functions in addition to its inhibitory effect on ribonucleotide reduction to generate replication stress and genome instability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Desoxirribonucleotídeos/metabolismo , Instabilidade Genômica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
10.
Yeast ; 32(6): 469-78, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25801050

RESUMO

We here describe an IPTG-inducible system that reveals that the lac repressor alone can function as a potent transmodulator to regulate gene expression in the fission yeast, Schizosaccharomyces pombe. This expression system is a derivative of the Sz. pombe nmt promoter, which normally is strongly repressed by thiamine. With appropriate positioning of a lac operator site (lacO) downstream of the TATA-box, we show that gene expression from a chimeric nmt::lacO promoter can be regulated by the lac repressor up to two orders of magnitude in response to IPTG. The chimeric nmt::lacO promoter is rapidly induced and when GFP is used as a reporter; almost full induction is achieved 40 min after the addition of IPTG. Like the wild-type nmt promoter, the chimeric nmt::lacO is repressed by thiamine. This allows expression in a short and defined window, e.g. the S-phase of a synchronized cell population, by first adding IPTG to turn on expression, followed by addition of thiamine to switch off expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Isopropiltiogalactosídeo/metabolismo , Regiões Promotoras Genéticas , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Tiamina/metabolismo
11.
iScience ; 26(1): 105806, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36632060

RESUMO

Wee1-like protein kinase (WEE1) restrains activities of cyclin-dependent kinases (CDKs) in S and G2 phase. Inhibition of WEE1 evokes drastic increase in CDK activity, which perturbs replication dynamics and compromises cell cycle checkpoints. Notably, WEE1 inhibitors such as adavosertib are tested in cancer treatment trials; however, WEE1-regulated phosphoproteomes and their dynamics have not been systematically investigated. In this study, we identified acute time-resolved alterations in the cellular phosphoproteome following WEE1 inhibition with adavosertib. These treatments acutely elevated CDK activities with distinct phosphorylation dynamics revealing more than 600 potential uncharacterized CDK sites. Moreover, we identified a major role for WEE1 in controlling CDK-dependent phosphorylation of multiple clustered sites in the key DNA repair factors MDC1, 53BP1, and RIF1. Functional analysis revealed that WEE1 fine-tunes CDK activities to permit recruitment of 53BP1 to chromatin. Thus, our findings uncover WEE1-controlled targets and pathways with translational potential for the clinical application of WEE1 inhibitors.

12.
Genetics ; 225(3)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758508

RESUMO

Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.


Assuntos
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Alelos , Compreensão , Bases de Dados Genéticas , Fenótipo
13.
J Cell Biol ; 165(6): 759-65, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15197176

RESUMO

Telomeres share the ability to silence nearby transcription with heterochromatin, but the requirement of heterochromatin proteins for most telomere functions is unknown. The fission yeast Rik1 protein is required for heterochromatin formation at centromeres and the mating-type locus, as it recruits the Clr4 histone methyltransferase, whose modification of histone H3 triggers binding by Swi6, a conserved protein involved in spreading of heterochromatin. Here, we demonstrate that Rik1 and Clr4, but not Swi6, are required along with the telomere protein Taz1 for crucial chromosome movements during meiosis. However, Rik1 is dispensable for the protective roles of telomeres in preventing chromosome end-fusion. Thus, a Swi6-independent heterochromatin function distinct from that at centromeres and the mating-type locus operates at telomeres during sexual differentiation.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Heterocromatina/fisiologia , Heterocromatina/ultraestrutura , Meiose/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/citologia , Telômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , Deleção de Genes , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Telômero/ultraestrutura
14.
Mol Cell Biol ; 25(5): 2045-59, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15713656

RESUMO

In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase kinase (MAP3K) Byr2 can induce ectopic meiosis directly in haploid cells. We find that the Ste11 transcription factor becomes constitutively expressed in these cells and that the expression of pheromone-responsive genes no longer depends on nitrogen starvation. Epistasis analysis revealed that these conditions bypassed the requirement for the meiotic activator Mei3. Since Mei3 is normally needed for inactivation of the meiosis-repressing protein kinase Pat1, this finding suggests that the strong Byr2 signal causes inactivation of Pat1 by an alternative mechanism. Consistent with this possibility, we found that haploid meiosis was dramatically reduced when Ste11 was mutated to mimic phosphorylation by Pat1. The mutation of two putative MAPK sites in Ste11 also dramatically reduced the level of haploid meiosis, suggesting that Ste11 is a direct target of Spk1. Supporting this, we show that Spk1 can interact physically with Ste11 and also phosphorylate the transcription factor in vitro. Finally, we demonstrate that ste11 is required for pheromone-induced G1 arrest. Interestingly, when we mutated Ste11 in the sites for Pat1 and Spk1 phosphorylation simultaneously, the cells could still arrest in G1 in response to pheromone, suggesting the existence of yet a third bifurcation of the signaling pathway.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Meiose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Feromônios/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Fatores de Transcrição/metabolismo , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Expressão Gênica , Haploidia , MAP Quinase Quinase Quinases/genética , Meiose/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Nitrogênio/metabolismo , Fosforilação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética
15.
Curr Biol ; 13(14): R565-7, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12867051

RESUMO

In fission yeast, the COP9 signalosome is required to activate ribonucleotide reductase for DNA synthesis. This is mediated via the ubiquitin ligase Pcu4, activation of which leads to degradation of the scaffold protein Spd1, which anchors the small ribonucleotide reductase subunit in the nucleus away from the large subunit in the cytoplasm.


Assuntos
Ciclo Celular/fisiologia , Modelos Biológicos , Proteínas/genética , Ribonucleotídeo Redutases/metabolismo , Complexo do Signalossomo COP9 , Proteínas Culina/metabolismo , Complexos Multiproteicos , Peptídeo Hidrolases , Proteínas/metabolismo , Schizosaccharomyces , Ubiquitina-Proteína Ligases/metabolismo
16.
Cold Spring Harb Protoc ; 2017(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461681

RESUMO

Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.


Assuntos
RNA Fúngico/metabolismo , Schizosaccharomyces/genética , Biossíntese de Proteínas , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/metabolismo
17.
Genes (Basel) ; 8(5)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441348

RESUMO

In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1) blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4Cdt2 E3 ubiquitin ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4Cdt2, by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide triphosphate (dNTP) pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside transporter human equilibrative nucleoside transporter 1 (hENT1) and the Drosophila deoxynucleoside kinase. We present evidence that this salvage pathway is functional, as 2 µM of deoxynucleosides in the culture medium is able to rescue the growth of two different temperature-sensitive alleles controlling ribonucleotide reductase. However, salvage completely failed to rescue S phase delay, checkpoint activation, and damage sensitivity, which was caused by CRL4Cdt2 inactivation, suggesting that Spd1-in addition to repressing dNTP synthesis-together with Spd2, can inhibit other replication functions. We propose that this inhibition works at the point of the replication clamp proliferating cell nuclear antigen, a co-factor for DNA replication.

18.
BMC Genomics ; 7: 303, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17137508

RESUMO

BACKGROUND: Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones that activate a signal transduction pathway in the opposite cell type. The pheromone signalling orchestrates mating and is also required for entry into meiosis. RESULTS: Here we use DNA microarrays to identify genes that are induced by M-factor in P cells and by P-factor in M-cells. The use of a cyr1 genetic background allowed us to study pheromone signalling independently of nitrogen starvation. We identified a total of 163 genes that were consistently induced more than two-fold by pheromone stimulation. Gene disruption experiments demonstrated the involvement of newly discovered pheromone-induced genes in the differentiation process. We have mapped Gene Ontology (GO) categories specifically associated with pheromone induction. A direct comparison of the M- and P-factor induced expression pattern allowed us to identify cell-type specific transcripts, including three new M-specific genes and one new P-specific gene. CONCLUSION: We found that the pheromone response was very similar in M and P cells. Surprisingly, pheromone control extended to genes fulfilling their function well beyond the point of entry into meiosis, including numerous genes required for meiotic recombination. Our results suggest that the Ste11 transcription factor is responsible for the majority of pheromone-induced transcription. Finally, most cell-type specific genes now appear to be identified in fission yeast.


Assuntos
Genoma Fúngico/genética , Feromônios/farmacologia , Schizosaccharomyces/genética , Transcrição Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas de Schizosaccharomyces pombe/genética
19.
Cold Spring Harb Protoc ; 2016(9)2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587782

RESUMO

A well-characterized S phase, a unicellular lifestyle, and a plethora of mutations in key components of DNA metabolism make fission yeast a particularly attractive system in which to study DNA replication. However, synchronization of passage through a normal S phase has proved challenging. This protocol describes how combining nitrogen starvation with M-factor mating pheromone treatment presents a highly effective method for synchronizing passage through an ostensibly normal S phase.


Assuntos
Replicação do DNA , Feromônios/metabolismo , Fase S/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo
20.
PLoS One ; 10(2): e0117779, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658828

RESUMO

The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Genoma Fúngico/genética , Mutação , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Temperatura Baixa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Schizosaccharomyces/classificação , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/química , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Temperatura , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa