Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 148(1): 014705, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29306293

RESUMO

Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.

2.
Sci Rep ; 8(1): 14331, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254250

RESUMO

Conduction Electron Paramagnetic Resonance Imaging (CEPRI) is presented as a sensitive technique for mapping metallic lithium species. The method is demonstrated using different samples that are either thick or thin compared to the microwave skin depth. As a thin sample, microstructured metallic lithium deposits in a lithium-ion battery (LIB) separator were analysed, illustrating the capabilities of CEPRI by obtaining a high-resolution image with an image resolution in the micrometre range. Limitations and intricacies of the method due to non-linear effects caused by the skin effect are discussed based on images of surface patterns on thick metallic lithium samples. The lineshape of the EPR spectrum is introduced as a proxy to determine the suitability of CEPRI for the quantitative visualisation of metallic lithium deposits. The results suggest that CEPRI is particularly suited to analyse the spatial distribution of microstructured Li that forms during charging and discharging of LIB cells, including the localization of the point of failure in the case of an internal cell short circuit caused by dendrites.

3.
J Magn Reson ; 269: 157-161, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27323280

RESUMO

Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140°C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa