Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 4): 134908, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181356

RESUMO

Dimethyl fumarate (DMF) is a drug that is orally administered for the treatment of relapsing-remitting multiple sclerosis. However, DMF causes gastrointestinal side effects and flushing in 43 % of patients, which significantly contributes to treatment discontinuation. To reduce side effects and increase patient compliance, the aim of this study was to develop a thermosensitive chitosan/glycerophosphate hydrogel for the nasal administration of DMF. A binary system of DMF with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) was made and included in the hydrogel precursor solution. The precursor solution (drug content, DMF stability, thermogelling properties, viscosity), and the resulting thermosensitive hydrogel (mucoadhesion, in vitro DMF permeation) were characterized. HP-ß-CD was able to interact with DMF and improve its water solubility. The leader thermosensitive nasal solution, G1 solution, was loaded with approximately 92 % DMF, which remained stable for 21 days. The G1 solution formed a hydrogel in approximately 2-1 min; it had a pH of 6.8 ± 0.06 and caused no significant change in the osmolality of the simulated nasal medium. The G1 hydrogel showed good mucoadhesive properties and released DMF that permeated in vitro in a controlled manner. As a result, G1 is a potential new approach to exploit the intranasal administration of DMF for treating multiple sclerosis.

2.
Pharmaceuticals (Basel) ; 15(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35745581

RESUMO

The Paediatric Committee of the European Medicines Agency encourages research into medicinal products for children, in particular, the development of an age-appropriate formulation of captopril is required in the cardiovascular therapeutic area. The aim of this study was the development of a liquid formulation using nanoparticles based only on chitosan and cellulose acetate phthalate containing captopril for the treatment of hypertension, heart failure and diabetic nephropathy in paediatric patients. Nanoparticles were prepared by a nanoprecipitation method/dropping technique without using surfactants, whose use can be associated with toxicity. A range of different cellulose to chitosan weight ratios were tested. A good encapsulation efficiency (61.0 ± 6.5%) was obtained when a high chitosan concentration was used (1:3 ratio); these nanoparticles (named NP-C) were spherical with a mean diameter of 427.1 ± 32.7 nm, 0.17 ± 0.09 PDI and +53.30 ± 0.95 mV zeta potential. NP-C dispersion remained stable for 28 days in terms of size and drug content and no captopril degradation was observed. NP-C dispersion released 70% of captopril after 2 h in pH 7.4 phosphate buffer and NP-C dispersion did not have a cytotoxicity effect on neonatal human fibroblasts except at the highest dose tested after 48 h. As a result, chitosan/cellulose nanoparticles could be considered a suitable platform for captopril delivery in paediatrics for preparing solid/liquid dosage forms.

3.
Pharmaceutics ; 13(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066953

RESUMO

This review aims to provide the state of the art on polymeric and lipid nanoparticles, used or suggested to approach pediatric diseases' problems and needs, and to inspire new researches in this field. Several drugs are currently not available in formulations suitable for pediatric patients. The United States Pediatric Formulation Initiative suggested applying new technologies to pediatric drug formulations, for instance, nanotechnology. The literature analysis showed that polymeric and lipid nanoparticles have been widely studied to treat pediatric diseases, and albumin nanoparticles and liposomes are already used in clinical practice. Nevertheless, these studies are focused almost exclusively on pediatric cancer treatment. Although nanomedicine may solve many needs of pediatric diseases and medicines, the unavailability of data on pharmacokinetics, safety and efficacy of both drugs and nanoparticles in pediatric patients limits the development of new pediatric medicines based on nanoparticles. Therefore, nanomedicine applied in pediatrics remains a significant challenge in the near future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa