Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 17(5): 416-420, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610487

RESUMO

The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.

2.
Proc Natl Acad Sci U S A ; 112(38): 11795-9, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351697

RESUMO

Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta G, Calandra M, Mauri F (2012) Nat Phys 8(2):131-134]. Although experiments have shown an adatom-induced enhancement of the electron-phonon coupling, superconductivity has never been observed. Using angle-resolved photoemission spectroscopy (ARPES), we show that lithium deposited on graphene at low temperature strongly modifies the phonon density of states, leading to an enhancement of the electron-phonon coupling of up to λ ≃ 0.58. On part of the graphene-derived π*-band Fermi surface, we then observe the opening of a Δ ≃ 0.9-meV temperature-dependent pairing gap. This result suggests for the first time, to our knowledge, that Li-decorated monolayer graphene is indeed superconducting, with Tc ≃ 5.9 K.

3.
Sci Adv ; 8(23): eabm5180, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675409

RESUMO

Quantum materials are notoriously sensitive to their environments, where small perturbations can tip a system toward one of several competing ground states. Graphene hosts a rich assortment of such competing phases, including a bond density wave instability ("Kekulé distortion") that couples electrons at the K/K' valleys and breaks the lattice symmetry. Here, we report observations of a ubiquitous Kekulé distortion across multiple graphene systems. We show that extremely dilute concentrations of surface atoms (less than three adsorbed atoms every 1000 graphene unit cells) can self-assemble and trigger the onset of a global Kekulé density wave phase. Combining complementary momentum-sensitive angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED) measurements, we confirm the presence of this density wave phase and observe the opening of an energy gap. Our results reveal an unexpected sensitivity of the graphene lattice to dilute surface disorder and show that adsorbed atoms offer an attractive route toward designing novel phases in two-dimensional materials.

4.
Sci Adv ; 5(11): eaaw5593, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723598

RESUMO

Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T, enabling the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa