RESUMO
Transmission spectroscopy1-3 of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species-in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec's PRISM mode9 as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10-12. We robustly detect several chemical species at high significance, including Na (19σ), H2O (33σ), CO2 (28σ) and CO (7σ). The non-detection of CH4, combined with a strong CO2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.
RESUMO
The complexes of the dithiophosphinic acids with Pd(II), Pb(II), Cd(II), and ZN(II) in a toluene-ethanol medium produce single polarographic waves. The half-wave potential is a linear function of the ligand concentration. The stabilities of these chelates, which are characterized by a sulphur-metal bond, are in the order: Pd(II) > Pb(II) > Cd(II) > Zn(II).
RESUMO
A modified graphite electrode was produced by adsorption the bis(diisopropyloxythiophosphone)disulphide {(i-PrO-)(2)P(S)S-}(2) under vacuum. Its electrochemical characteristics in flowing stream were described. The modified electrode has been used for simultaneous determination of Cu(II), Ag(I) by flow injection anodic stripping voltammetry.