Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 10(9): e1003827, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188426

RESUMO

The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species.


Assuntos
Isótopos de Carbono/metabolismo , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Peptídeos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/química , Biologia Computacional , Desulfovibrio vulgaris/metabolismo , Mathanococcus/metabolismo , Consórcios Microbianos , Peptídeos/análise , Peptídeos/química
2.
Nucleic Acids Res ; 41(Web Server issue): W256-65, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23680785

RESUMO

The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov.


Assuntos
Domínio Catalítico , Software , Bases de Dados de Proteínas , Internet , Modelos Moleculares
3.
Biophys J ; 107(3): 630-641, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099802

RESUMO

The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (Peff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R(2) = 0.94) and logPS (R(2) = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Modelos Biológicos , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/sangue
4.
Proc Natl Acad Sci U S A ; 108(45): E1009-18, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025687

RESUMO

Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Termodinâmica
5.
Proteins ; 78(11): 2490-505, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20602354

RESUMO

Predicting the conformations of loops is a critical aspect of protein comparative (homology) modeling. Despite considerable advances in developing loop prediction algorithms, refining loops in homology models remains challenging. In this work, we use antibodies as a model system to investigate strategies for more robustly predicting loop conformations when the protein model contains errors in the conformations of side chains and protein backbone surrounding the loop in question. Specifically, our test system consists of partial models of antibodies in which the "scaffold" (i.e., the portion other than the complementarity determining region, CDR, loops) retains native backbone conformation, whereas the CDR loops are predicted using a combination of knowledge-based modeling (H1, H2, L1, L2, and L3) and ab initio loop prediction (H3). H3 is the most variable of the CDRs. Using a previously published method, a test set of 10 shorter H3 loops (5-7 residues) are predicted to an average backbone (N-C alpha-C-O) RMSD of 2.7 A while 11 longer loops (8-9 residues) are predicted to 5.1 A, thus recapitulating the difficulties in refining loops in models. By contrast, in control calculations predicting the same loops in crystal structures, the same method reconstructs the loops to an average of 0.5 and 1.4 A for the shorter and longer loops, respectively. We modify the loop prediction method to improve the ability to sample near-native loop conformations in the models, primarily by reducing the sensitivity of the sampling to the loop surroundings, and allowing the other CDR loops to optimize with the H3 loop. The new method improves the average accuracy significantly to 1.3 A RMSD and 3.1 A RMSD for the shorter and longer loops, respectively. Finally, we present results predicting 8-10 residue loops within complete comparative models of five nonantibody proteins. While anecdotal, these mixed, full-model results suggest our approach is a promising step toward more accurately predicting loops in homology models. Furthermore, while significant challenges remain, our method is a potentially useful tool for predicting antibody structures based on a known Fv scaffold.


Assuntos
Regiões Determinantes de Complementaridade/química , Fragmentos de Imunoglobulinas/química , Modelos Moleculares , Modelos Estatísticos , Cristalografia por Raios X , Conformação Proteica , Homologia Estrutural de Proteína
6.
PLoS One ; 8(5): e62535, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675414

RESUMO

We present an enzyme protein function identification algorithm, Catalytic Site Identification (CatSId), based on identification of catalytic residues. The method is optimized for highly accurate template identification across a diverse template library and is also very efficient in regards to time and scalability of comparisons. The algorithm matches three-dimensional residue arrangements in a query protein to a library of manually annotated, catalytic residues--The Catalytic Site Atlas (CSA). Two main processes are involved. The first process is a rapid protein-to-template matching algorithm that scales quadratically with target protein size and linearly with template size. The second process incorporates a number of physical descriptors, including binding site predictions, in a logistic scoring procedure to re-score matches found in Process 1. This approach shows very good performance overall, with a Receiver-Operator-Characteristic Area Under Curve (AUC) of 0.971 for the training set evaluated. The procedure is able to process cofactors, ions, nonstandard residues, and point substitutions for residues and ions in a robust and integrated fashion. Sites with only two critical (catalytic) residues are challenging cases, resulting in AUCs of 0.9411 and 0.5413 for the training and test sets, respectively. The remaining sites show excellent performance with AUCs greater than 0.90 for both the training and test data on templates of size greater than two critical (catalytic) residues. The procedure has considerable promise for larger scale searches.


Assuntos
Algoritmos , Biologia Computacional/métodos , Enzimas/química , Enzimas/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Bases de Dados de Proteínas , Modelos Logísticos , Modelos Moleculares , Conformação Proteica , Curva ROC , Reprodutibilidade dos Testes
7.
J Chem Theory Comput ; 7(5): 1564-1574, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743800

RESUMO

Loop flexibility is often crucial to protein biological function in solution. We report a new Monte Carlo method for generating conformational ensembles for protein loops and cyclic peptides. The approach incorporates the triaxial loop closure method which addresses the inverse kinematic problem for generating backbone move sets that do not break the loop. Sidechains are sampled together with the backbone in a hierarchical way, making it possible to make large moves that cross energy barriers. As an initial application, we apply the method to the flexible loop in triosephosphate isomerase that caps the active site, and demonstrate that the resulting loop ensembles agree well with key observations from previous structural studies. We also demonstrate, with 3 other test cases, the ability to distinguish relatively flexible and rigid loops within the same protein.

8.
J Chem Theory Comput ; 5(8): 1968-84, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26613140

RESUMO

We present a new Monte Carlo method for sampling rugged energy landscapes that allows for efficient transitions across sparsely distributed local basins. The trial move consists of two steps. The first step is a large initial trial move, and the second step is a Monte Carlo trajectory generated using smaller trial moves. To maintain detailed balance, a reverse transition probability is estimated along a path that differs from the forward path. Since the forward and reverse transitions are different, we name the algorithm POSH (port out, starboard home) Monte Carlo. The process obeys detailed balance to the extent that the transition probabilities are correctly estimated. There is an optimal range of performance for a given energy landscape, which depends on how sparsely the low energy states of the system are distributed. For simple model systems, adequate precision is obtained over a large range of inner steps settings. Side chain sampling of residues in the binding region of progesterone antibody 1dba are studied, and show that significant improvement over a comparable standard protocol can be obtained using POSH sampling. To compare with experimental data, the phosphopeptide Ace-Gly-Ser-pSer-Ser-Nma is also studied, and the resulting NMR observables compare well with experiment. For the biomolecular systems studied, we show that POSH sampling generates precise distributions using the number of inner steps set up to 20.

9.
J Chem Theory Comput ; 4(5): 835-846, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19119325

RESUMO

We present a Monte Carlo sidechain sampling procedure and apply it to assessing the flexibility of protein binding pockets. We implemented a multiple "time step" Monte Carlo algorithm to optimize sidechain sampling with a surface generalized Born implicit solvent model. In this approach, certain forces (those due to long-range electrostatics and the implicit solvent model) are updated infrequently, in "outer steps", while short-range forces (covalent, local nonbonded interactions) are updated at every "inner step". Two multistep protocols were studied. The first protocol rigorously obeys detailed balance, and the second protocol introduces an approximation to the solvation term that increases the acceptance ratio. The first protocol gives a 10-fold improvement over a protocol that does not use multiple time steps, while the second protocol generates comparable ensembles and gives a 15-fold improvement. A range of 50-200 inner steps per outer step was found to give optimal performance for both protocols. The resultant method is a practical means to assess sidechain flexibility in ligand binding pockets, as we illustrate with proof-of-principle calculations on six proteins: DB3 antibody, thermolysin, estrogen receptor, PPAR-γ, PI3 kinase, and CDK2. The resulting sidechain ensembles of the apo binding sites correlate well with known induced fit conformational changes and provide insights into binding pocket flexibility.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa