Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 43(1): 86-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602543

RESUMO

The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts.

2.
J Environ Manage ; 92(3): 695-707, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21030134

RESUMO

A steam injection pilot-scale experiment was performed on the unsaturated zone of a strongly heterogeneous fractured soil contaminated by jet fuel. Before the treatment, the soil was stimulated by creating sub-horizontal sand-filled hydraulic fractures at three depths. The steam was injected through one hydraulic fracture and gas/water/non-aqueous phase liquid (NAPL) was extracted from the remaining fractures by applying a vacuum to extraction wells. The injection strategy was designed to maximize the heat delivery over the entire cell (10 m × 10 m × 5 m). The soil temperature profile, the recovered NAPL, the extracted water, and the concentrations of volatile organic compounds (VOCs) in the gas phase were monitored during the field test. GC-MS chemical analyses of pre- and post-treatment soil samples allowed for the quantitative assessment of the remediation efficiency. The growth of the heat front followed the configuration of hydraulic fractures. The average concentration of total hydrocarbons (g/kg of soil) was reduced by ∼ 43% in the upper target zone (depth = 1.5-3.9 m) and by ∼ 72% over the entire zone (depth = 1.5-5.5 m). The total NAPL mass removal based on gas and liquid stream measurements and the free-NAPL product were almost 30% and 2%, respectively, of those estimated from chemical analyses of pre- and post-treatment soil samples. The dominant mechanisms of soil remediation was the vaporization of jet fuel compounds at temperatures lower than their normal boiling points (steam distillation) enhanced by the ventilation of porous matrix due to the forced convective flow of air. In addition, the significant reduction of the NAPL mass in the less-heated deeper zone may be attributed to the counter-current imbibition of condensed water from natural fractures into the porous matrix and the gravity drainage associated with seasonal fluctuations of the water table.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos , Poluentes do Solo/química , Cromatografia Gasosa-Espectrometria de Massas , Projetos Piloto , Polônia , Vapor
3.
Ground Water ; 59(6): 866-877, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33942295

RESUMO

A numerical study demonstrates the effects of flooding on subsurface hydrological flowpaths and nitrate removal in anoxic groundwater in riparian zones with a top peat layer. A series of two-dimensional numerical simulations with changing conditions for flow (steady state or transient with flooding), hydrogeology, denitrification, and duration of flooding demonstrate how flowpaths, residence times, and nitrate removal are affected. In periods with no flooding groundwater flows horizontally and discharges to the river through the riverbed. During periods with flooding, shallow groundwater is forced upwards as discharge through peat layers that often have more optimal conditions for denitrification caused by the presence of highly reactive organic matter. The contrast in hydraulic conductivity between the sand aquifer and the overlying peat layer, as well as the flooding duration, have a significant role in determining the degree of nitrate removal.


Assuntos
Água Subterrânea , Monitoramento Ambiental , Inundações , Nitratos/análise , Rios
4.
Ground Water ; 53(5): 709-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25324021

RESUMO

The heterogeneous nature of both groundwater discharge to a lake (inflow) and nitrate concentrations in groundwater can lead to significant errors in calculations of nutrient loading. Therefore, an integrated approach, combining groundwater flow and transport modelling with observed nitrate and ammonium groundwater concentrations, was used to estimate nitrate loading from a catchment via groundwater to an oligotrophic flow-through lake (Lake Hampen, Denmark). The transport model was calibrated against three vertical nitrate profiles from multi-level wells and 17 shallow wells bordering a crop field near the lake. Nitrate concentrations in groundwater discharging to the lake from the crop field were on average 70 times higher than in groundwater from forested areas. The crop field was responsible for 96% of the total nitrate loading (16.2 t NO3 /year) to the lake even though the field only covered 4.5% of the catchment area. Consequently, a small change in land use in the catchment will have a large effect on the lake nutrient balance and possible lake restoration. The study is the first known attempt to estimate the decrease of nitrate loading via groundwater to a seepage lake when an identified catchment source (a crop field) is removed.


Assuntos
Água Subterrânea/análise , Lagos/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Agricultura , Compostos de Amônio/análise , Dinamarca , Florestas , Modelos Teóricos
5.
Sci Total Environ ; 468-469: 1278-88, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953482

RESUMO

In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30-50 m and 2m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the predictions of the different models.


Assuntos
Política Ambiental/legislação & jurisprudência , Fenômenos Geológicos , Modelos Teóricos , Nitratos/análise , Rios/química , Movimentos da Água , Poluição Química da Água/prevenção & controle , Dinamarca , Previsões/métodos , Tecnologia de Sensoriamento Remoto/métodos , Incerteza , Poluição Química da Água/legislação & jurisprudência
6.
Ground Water ; 51(5): 692-705, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23252428

RESUMO

Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments.


Assuntos
Sedimentos Geológicos , Geologia/métodos , Modelos Teóricos , Dióxido de Silício , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa