Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565289

RESUMO

Several studies have shown white matter (WM) abnormalities in Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aß-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aß-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.


Assuntos
Doença de Alzheimer , Imagem de Tensor de Difusão , Substância Branca , Proteínas tau , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Feminino , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idoso , Proteínas tau/metabolismo , Imagem de Tensor de Difusão/métodos , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia
2.
Brain ; 147(3): 961-969, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128551

RESUMO

There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-ß (Aß), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aß/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aß-positive but still tau-negative individuals. These increases were steeper in Aß-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Imagem de Tensor de Difusão , Imagem de Difusão por Ressonância Magnética , Peptídeos beta-Amiloides , Filamentos Intermediários
3.
Neuroimage ; 296: 120672, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851551

RESUMO

Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Feminino , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão/métodos , Idoso de 80 Anos ou mais , Função Executiva/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Conectoma/métodos , Encéfalo/diagnóstico por imagem
4.
Magn Reson Med ; 92(2): 660-675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38525601

RESUMO

PURPOSE: To investigate the effects of compartmental anisotropy on filtered exchange imaging (FEXI) in white matter (WM). THEORY AND METHODS: FEXI signals were measured using multiple combinations of diffusion filter and detection directions in five healthy volunteers. Additional filters, including a trace-weighted diffusion filter with trapezoidal gradients, a spherical b-tensor encoded diffusion filter, and a T2 filter, were tested with trace-weighted diffusion detection. RESULTS: A large range of apparent exchange rates (AXR) and both positive and negative filter efficiencies (σ) were found depending on the mutual orientation of the filter and detection gradients relative to WM fiber orientation. The data demonstrated that the fast-diffusion compartment suppressed by diffusional filtering is not exclusively extra-cellular, but also intra-cellular. While not comprehensive, a simple two-compartment diffusion tensor model with water exchange was able to account qualitatively for the trends in positive and negative filtering efficiencies, while standard model imaging (SMI) without exchange could not. This two-compartment diffusion tensor model also demonstrated smaller AXR variances across subjects. When employing trace-weighted diffusion detection, AXR values were on the order of the R1 (=1/T1) of water at 3T for crossing fibers, while being less than R1 for parallel fibers. CONCLUSION: Orientation-dependent AXR and σ values were observed when using multi-orientation filter and detection gradients in FEXI, indicating that WM FEXI models need to account for compartmental anisotropy. When using trace-weighted detection, AXR values were on the order of or less than R1, complicating the interpretation of FEXI results in WM in terms of biological exchange properties. These findings may contribute toward better understanding of FEXI results in WM.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Anisotropia , Substância Branca/diagnóstico por imagem , Adulto , Masculino , Imagem de Tensor de Difusão/métodos , Feminino , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos
5.
Magn Reson Med ; 91(5): 2126-2141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38156813

RESUMO

PURPOSE: Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS: Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (µFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS: MD was ˜40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher µFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower µFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION: DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , AVC Isquêmico/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
6.
NMR Biomed ; : e5208, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961745

RESUMO

Filter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients. Thin imaging slices require strong crushers, which can introduce significant diffusion weighting and bias exchange rate estimates. Here, we treat the crushers as an additional encoding block and consider FEXI as a triple diffusion-encoding sequence. This allows the bias to be corrected in the case of multi-Gaussian diffusion, but not easily in the presence of restricted diffusion. Our approach addresses challenges in the presence of restricted diffusion and relies on the ability to independently gauge sensitivities to exchange and restricted diffusion for arbitrary gradient waveforms. It follows two principles: (i) the effects of crushers are included in the forward model using signal cumulant expansion; and (ii) timing parameters of diffusion gradients in filter and detection blocks are adjusted to maintain the same level of restriction encoding regardless of the mixing time. This results in the tuned exchange imaging (TEXI) protocol. The accuracy of exchange mapping with TEXI was assessed through Monte Carlo simulations in spheres of identical sizes and gamma-distributed sizes, and in parallel hexagonally packed cylinders. The simulations demonstrate that TEXI provides consistent exchange rates regardless of slice thickness and restriction size, even with strong crushers. However, the accuracy depends on b-values, mixing times, and restriction geometry. The constraints and limitations of TEXI are discussed, including suggestions for protocol adaptations. Further studies are needed to optimize the precision of TEXI and assess the approach experimentally in realistic, heterogeneous substrates.

7.
Brain ; 146(4): 1602-1614, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130332

RESUMO

Markers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer's disease. Morphological metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect amyloid-beta (Aß)- related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes and to test their associations with multiple aspects of the Alzheimer's disease pathological cascade, including both Aß and tau accumulation, astrocytic activation and cognitive deficits. We applied the mean apparent diffusion propagator model to diffusion MRI data from 492 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. Participants were stratified in Aß-negative/tau-negative, Aß-positive/tau-negative and Aß-positive/tau-positive based on Aß- and tau-PET uptake. Cortical regional values of diffusion MRI metrics and cortical thickness were compared across groups. Associations between regional values of diffusion MRI metrics and both Aß- and tau-PET uptake were also investigated along with the association with plasma level of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation (available in 292 participants). Mean squared displacement revealed widespread microstructural differences already between Aß-negative/tau-negative and Aß-positive/tau-negative participants with a spatial distribution that closely resembled the pattern of Aß accumulation. In contrast, differences in cortical thickness were clearly more limited. Mean squared displacement was also correlated with both Aß- and tau-PET uptake even independently from one another and from cortical thickness. Further, the same metric exhibited significantly stronger correlations with PET uptake than cortical thickness (P < 0.05). Mean squared displacement was also positively correlated with GFAP with a pattern that resembles Aß accumulation, and GFAP partially mediated the association between Aß accumulation and mean squared displacement. Further, impairments in executive functions were significantly more associated with mean squared displacement values extracted from a meta-region of interest encompassing regions accumulating Aß early in the disease process, than with cortical thickness (P < 0.05). Similarly, impairments in memory functions were significantly more associated with mean squared displacement values extracted from a temporal meta-region of interest than with cortical thickness (P < 0.05). Metrics of cortical microstructural alteration derived from diffusion MRI are highly sensitive to multiple aspects of the Alzheimer's disease pathological cascade. Of particular interest is the link with both Aß-PET and GFAP, suggesting diffusion MRI might reflects microstructural changes related to the astrocytic response to Aß aggregation. Therefore, metrics of cortical diffusion might be important outcome measures in anti-Aß treatments clinical trials for detecting drug-induced changes in cortical microstructure.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologia , Amiloide/metabolismo , Atrofia/patologia , Biomarcadores/metabolismo
8.
Neuroimage ; 283: 120409, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839729

RESUMO

The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms designed to be selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m). In an experiment featuring a large set of 150 gradient waveforms with different sensitivities to restricted diffusion and exchange, our results reveal unique and different time-dependence signatures in grey and white matter. Grey matter was characterised by both restricted diffusion and exchange and white matter predominantly by restricted diffusion. Exchange in grey matter was at least twice as fast as in white matter, across all subjects and all gradient strengths. The cerebellar cortex featured relatively short exchange times (115 ms). Furthermore, we show that gradient waveforms with tailored designs can be used to map exchange in the human brain. We also assessed the feasibility of clinical applications of the method used in this work and found that the exchange-related contrast obtained with a 25-minute protocol at 300 mT/m was preserved in a 4-minute protocol at 300 mT/m and a 10-minute protocol at 80 mT/m. Our work underlines the utility of free waveforms for detecting time dependence signatures due to restricted diffusion and exchange in vivo, which may potentially serve as a tool for studying diseased tissue.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Cinzenta , Difusão
9.
Neuroimage ; 282: 120338, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598814

RESUMO

Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.


Assuntos
Encéfalo , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Anisotropia
10.
NMR Biomed ; 36(1): e4827, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36075110

RESUMO

Monitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape. The representation features mappings from a gradient waveform to two scalars that separately control the sensitivity to restriction and exchange. We demonstrate that these scalars span a two-dimensional space that can be used to choose waveforms that selectively probe restricted diffusion or exchange, eliminating the correlation between the two phenomena. We found that waveforms with specific but unconventional shapes provide an advantage over conventional pulsed and oscillating gradient acquisitions. We also show that parametrization of waveforms into a two-dimensional space can be used to understand protocols from other approaches that probe restricted diffusion and exchange. For example, we found that the variation of mixing time in filter-exchange imaging corresponds to variation of our exchange-weighting scalar at a fixed value of the restriction-weighting scalar. The proposed signal representation was evaluated using Monte Carlo simulations in identical parallel cylinders with hexagonal and random packing as well as parallel cylinders with gamma-distributed radii. Results showed that the approach is sensitive to sizes in the interval 4-12 µm and exchange rates in the simulated range of 0 to 20 s - 1 , but also that there is a sensitivity to the extracellular geometry. The presented theory constitutes a simple and intuitive description of how restricted diffusion and exchange influence the signal as well as a guide to protocol design capable of separating the two effects.

11.
J Magn Reson Imaging ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032021

RESUMO

Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.

12.
Acta Oncol ; 61(6): 680-687, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35275512

RESUMO

BACKGROUND: Chemo- and radiotherapy (RT) is standard treatment for patients with high-grade glioma, but may cause side-effects on the patient's cognitive function. AIM: Use of diffusion tensor imaging (DTI) to investigate the longitudinal changes in normal-appearing brain tissue in glioblastoma patients undergoing modern arc-based RT with volumetric modulated arc therapy (VMAT) or helical tomotherapy. MATERIALS AND METHODS: The study included 27 patients newly diagnosed with glioblastoma and planned for VMAT or tomotherapy. All subjects underwent magnetic resonance imaging at the start of RT and at week 3, 6, 15, and 26. Fourteen subjects were additionally imaged at week 52. The DTI data were co-registered to the dose distribution maps. Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were assessed in the corpus callosum, the centrum semiovale, the hippocampus, and the amygdala. RESULTS: Significant longitudinal changes in FA, MD, and RD were mainly found in the corpus callosum. In the other examined brain structures, only sparse and transient changes were seen. No consistent correlations were found between biodose, age, or gender and changes in DTI parameters. CONCLUSION: Longitudinal changes in MD, FA, and RD were observed but only in a limited number of brain structures and the changes were smaller than expected from literature. The results suggest that modern, arc-based RT may have less negative effect on normal-appearing parts of the brain tissue up to 12 months after radiotherapy.


Assuntos
Imagem de Tensor de Difusão , Glioblastoma , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Humanos , Estudos Longitudinais
13.
Neuroimage ; 245: 118673, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688898

RESUMO

Diffusion MRI (dMRI) can probe the tissue microstructure but suffers from low signal-to-noise ratio (SNR) whenever high resolution is combined with high diffusion encoding strengths. Low SNR leads to poor precision as well as poor accuracy of the diffusion-weighted signal; the latter is caused by the rectified noise floor and can be observed as a positive bias in magnitude signal. Super-resolution techniques may facilitate a beneficial tradeoff between bias and resolution by allowing acquisition at low spatial resolution and high SNR, whereafter high spatial resolution is recovered by image reconstruction. In this work, we describe a super-resolution reconstruction framework for dMRI and investigate its performance with respect to signal accuracy and precision. Using phantom experiments and numerical simulations, we show that the super-resolution approach improves accuracy by facilitating a more beneficial trade-off between spatial resolution and diffusion encoding strength before the noise floor affects the signal. By contrast, precision is shown to have a less straightforward dependency on acquisition, reconstruction, and intrinsic tissue parameters. Indeed, we find a gain in precision from super-resolution reconstruction is substantial only when some spatial resolution is sacrificed. Finally, we deployed super-resolution reconstruction in a healthy brain for the challenging combination of spherical b-tensor encoding at ultra-high b-values and high spatial resolution-a configuration that produces a unique contrast that emphasizes tissue in which diffusion is restricted in all directions. This demonstration showcased that super-resolution reconstruction enables a vastly superior image contrast compared to conventional imaging, facilitating investigations that would otherwise have prohibitively low SNR, resolution or require non-conventional MRI hardware.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/normas , Processamento de Imagem Assistida por Computador/normas , Adulto , Algoritmos , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Imagens de Fantasmas , Razão Sinal-Ruído
14.
Neuroimage ; 237: 118183, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020013

RESUMO

The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called 'b-tensor' encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of 7µm, while the second, pure Monte Carlo simulations, yielded a lower limit of 3µm and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Modelos Teóricos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Adulto , Humanos
15.
Neuroimage ; 244: 118601, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562578

RESUMO

Specific features of white matter microstructure can be investigated by using biophysical models to interpret relaxation-diffusion MRI brain data. Although more intricate models have the potential to reveal more details of the tissue, they also incur time-consuming parameter estimation that may converge to inaccurate solutions due to a prevalence of local minima in a degenerate fitting landscape. Machine-learning fitting algorithms have been proposed to accelerate the parameter estimation and increase the robustness of the attained estimates. So far, learning-based fitting approaches have been restricted to microstructural models with a reduced number of independent model parameters where dense sets of training data are easy to generate. Moreover, the degree to which machine learning can alleviate the degeneracy problem is poorly understood. For conventional least-squares solvers, it has been shown that degeneracy can be avoided by acquisition with optimized relaxation-diffusion-correlation protocols that include tensor-valued diffusion encoding. Whether machine-learning techniques can offset these acquisition requirements remains to be tested. In this work, we employ artificial neural networks to vastly accelerate the parameter estimation for a recently introduced relaxation-diffusion model of white matter microstructure. We also develop strategies for assessing the accuracy and sensitivity of function fitting networks and use those strategies to explore the impact of the acquisition protocol. The developed learning-based fitting pipelines were tested on relaxation-diffusion data acquired with optimal and sub-optimal acquisition protocols. Networks trained with an optimized protocol were observed to provide accurate parameter estimates within short computational times. Comparing neural networks and least-squares solvers, we found the performance of the former to be less affected by sub-optimal protocols; however, model fitting networks were still susceptible to degeneracy issues and their use could not fully replace a careful design of the acquisition protocol.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Redes Neurais de Computação , Substância Branca/diagnóstico por imagem , Algoritmos , Humanos , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Neuroimagem
16.
Neuroimage ; 240: 118367, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237442

RESUMO

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


Assuntos
Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Animais , Encéfalo/fisiologia , Humanos , Camundongos
17.
Hum Brain Mapp ; 42(15): 5037-5050, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34288240

RESUMO

People learn new languages with varying degrees of success but what are the neuroanatomical correlates of the difference in language-learning aptitude? In this study, we set out to investigate how differences in cortical morphology and white matter microstructure correlate with aptitudes for vocabulary learning, phonetic memory, and grammatical inferencing as measured by the first-language neutral LLAMA test battery. We used ultra-high field (7T) magnetic resonance imaging to estimate the cortical thickness and surface area from sub-millimeter resolved image volumes. Further, diffusion kurtosis imaging was used to map diffusion properties related to the tissue microstructure from known language-related white matter tracts. We found a correlation between cortical surface area in the left posterior-inferior precuneus and vocabulary learning aptitude, possibly indicating a greater predisposition for storing word-figure associations. Moreover, we report negative correlations between scores for phonetic memory and axial kurtosis in left arcuate fasciculus as well as mean kurtosis, axial kurtosis, and radial kurtosis of the left superior longitudinal fasciculus III, which are tracts connecting cortical areas important for phonological working memory.


Assuntos
Aptidão/fisiologia , Córtex Cerebral/anatomia & histologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Psicolinguística , Substância Branca/anatomia & histologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Substância Branca/diagnóstico por imagem , Adulto Jovem
18.
Magn Reson Med ; 86(2): 754-764, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755261

RESUMO

PURPOSE: Reperfusion therapy enables effective treatment of ischemic stroke presenting within 4-6 hours. However, tissue progression from ischemia to infarction is variable, and some patients benefit from treatment up until 24 hours. Improved imaging techniques are needed to identify these patients. Here, it was hypothesized that time dependence in diffusion MRI may predict tissue outcome in ischemic stroke. METHODS: Diffusion MRI data were acquired with multiple diffusion times in five non-reperfused patients at 2, 9, and 100 days after stroke onset. Maps of "rate of kurtosis change" (k), mean kurtosis, ADC, and fractional anisotropy were derived. The ADC maps defined lesions, normal-appearing tissue, and the lesion tissue that would either be infarcted or remain viable by day 100. Diffusion parameters were compared (1) between lesions and normal-appearing tissue, and (2) between lesion tissue that would be infarcted or remain viable. RESULTS: Positive values of k were observed within stroke lesions on day 2 (P = .001) and on day 9 (P = .023), indicating diffusional exchange. On day 100, high ADC values indicated infarction of 50 ± 20% of the lesion volumes. Tissue infarction was predicted by high k values both on day 2 (P = .026) and on day 9 (P = .046), by low mean kurtosis values on day 2 (P = .043), and by low fractional anisotropy values on day 9 (P = .029), but not by low ADC values. CONCLUSIONS: Diffusion time dependence predicted tissue outcome in ischemic stroke more accurately than the ADC, and may be useful for predicting reperfusion benefit.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Anisotropia , Isquemia Encefálica/diagnóstico por imagem , Difusão , Imagem de Difusão por Ressonância Magnética , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem
19.
Magn Reson Med ; 86(4): 2025-2033, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056750

RESUMO

PURPOSE: Tensor-valued diffusion encoding provides more specific information than conventional diffusion-weighted imaging (DWI), but has mainly been applied in neuroimaging studies. This study aimed to assess its potential for the imaging of prostate cancer (PCa). METHODS: Seventeen patients with histologically proven PCa were enrolled. DWI of the prostate was performed with linear and spherical tensor encoding using a maximal b-value of 1.5 ms/µm2 and a voxel size of 3 × 3 × 4 mm3 . The gamma-distribution model was used to estimate the mean diffusivity (MD), the isotropic kurtosis (MKI ), and the anisotropic kurtosis (MKA ). Regions of interest were placed in MR-defined cancerous tissues, as well as in apparently healthy tissues in the peripheral and transitional zones (PZs and TZs). RESULTS: DWI with linear and spherical encoding yielded different image contrasts at high b-values, which enabled the estimation of MKA and MKI . Compared with healthy tissue (PZs and TZs combined) the cancers displayed a significantly lower MD (P < .05), higher MKI (P < 10-5 ), and lower MKA (P < .05). Compared with the TZ, tissue in the PZ showed lower MD (P < 10-3 ) and higher MKA (P < 10-3 ). No significant differences were found between cancers of different Gleason scores, possibly because of the limited sample size. CONCLUSION: Tensor-valued diffusion encoding enabled mapping of MKA and MKI in the prostate. The elevated MKI in PCa compared with normal tissues suggests an elevated heterogeneity in the cancers. Increased in-plane resolution could improve tumor delineation in future studies.


Assuntos
Próstata , Neoplasias da Próstata , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Masculino , Gradação de Tumores , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem
20.
Neuroimage ; 210: 116534, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931157

RESUMO

The so-called "dot-compartment" is conjectured in diffusion MRI to represent small spherical spaces, such as cell bodies, in which the diffusion is restricted in all directions. Previous investigations inferred its existence from data acquired with directional diffusion encoding which does not permit a straightforward separation of signals from 'sticks' (axons) and signals from 'dots'. Here we combine isotropic diffusion encoding with ultra-strong diffusion gradients (240 â€‹mT/m) to achieve high diffusion-weightings with high signal to noise ratio, while suppressing signal arising from anisotropic water compartments with significant mobility along at least one axis (e.g., axons). A dot-compartment, defined to have apparent diffusion coefficient equal to zero and no exchange, would result in a non-decaying signal at very high b-values (b≳7000s/mm2). With this unique experimental setup, a residual yet slowly decaying signal above the noise floor for b-values as high as 15000s/mm2 was seen clearly in the cerebellar grey matter (GM), and in several white matter (WM) regions to some extent. Upper limits of the dot-signal-fraction were estimated to be 1.8% in cerebellar GM and 0.5% in WM. By relaxing the assumption of zero diffusivity, the signal at high b-values in cerebellar GM could be represented more accurately by an isotropic water pool with a low apparent diffusivity of 0.12 µm2/ms and a substantial signal fraction of 9.7%. The T2 of this component was estimated to be around 61ms. This remaining signal at high b-values has potential to serve as a novel and simple marker for isotropically-restricted water compartments in cerebellar GM.


Assuntos
Córtex Cerebelar/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Adulto , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa