Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37225428

RESUMO

The prediction of drug-drug interactions (DDIs) is essential for the development and repositioning of new drugs. Meanwhile, they play a vital role in the fields of biopharmaceuticals, disease diagnosis and pharmacological treatment. This article proposes a new method called DBGRU-SE for predicting DDIs. Firstly, FP3 fingerprints, MACCS fingerprints, Pubchem fingerprints and 1D and 2D molecular descriptors are used to extract the feature information of the drugs. Secondly, Group Lasso is used to remove redundant features. Then, SMOTE-ENN is applied to balance the data to obtain the best feature vectors. Finally, the best feature vectors are fed into the classifier combining BiGRU and squeeze-and-excitation (SE) attention mechanisms to predict DDIs. After applying five-fold cross-validation, The ACC values of DBGRU-SE model on the two datasets are 97.51 and 94.98%, and the AUC are 99.60 and 98.85%, respectively. The results showed that DBGRU-SE had good predictive performance for drug-drug interactions.


Assuntos
Biologia Computacional , Interações Medicamentosas , Biologia Computacional/métodos
2.
Dalton Trans ; 51(9): 3512-3519, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142780

RESUMO

Oxygen vacancy (Ov) engineering of SnO2 electrocatalysts plays a crucial role in realizing efficient CO2 electroreduction (CO2RR) into formate. Herein, we demonstrate the rational synthesis of highly dispersed SnO2 nanoparticle electrocatalysts with an ultrahigh Ov content of up to 25.1% by a thermally induced strategy. The high Ov content greatly improves the intrinsic conductivity and remarkably enhances the chemisorption capacity to CO2, thus boosting the catalytic activity and reaction kinetics of CO2 electroconversion into formate. These advantages make the Ov-engineered SnO2 electrocatalysts exhibit both a high Faraday efficiency (FE) of nearly 90% and a superior cathodic energy efficiency of above 60% to produce formate in a wide current range from 100 to 400 mA cm-2 in a flow cell. A commercially required current of 200 mA cm-2 can be obtained at only 2.8 V in a full cell. The present Ov engineering strategy exhibits the possibility for the design and construction of high-activity oxide-based electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa