Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39318285

RESUMO

The ability to manipulate gene expression is valuable for elucidating gene function. In the fission yeast Schizosaccharomyces pombe, the most widely used regulatable expression system is the nmt1 promoter and its two attenuated variants. However, these promoters have limitations, including a long lag, incompatibility with rich media, and unsuitability for non-dividing cells. Here, we present a tetracycline-inducible system free of these shortcomings. Our system features the enotetS promoter, which achieves a similar induced level and a higher induction ratio compared to the nmt1 promoter, without exhibiting a lag. Additionally, our system includes four weakened enotetS variants, offering an expression range similar to the nmt1 series promoters but with more intermediate levels. To enhance usability, each promoter is combined with a Tet-repressor-expressing cassette in an integration plasmid. Importantly, our system can be used in non-dividing cells, enabling the development of a synchronous meiosis induction method with high spore viability. Moreover, our system allows for the shutdown of gene expression and the generation of conditional loss-of-function mutants. This system provides a versatile and powerful tool for manipulating gene expression in fission yeast.

2.
Proc Natl Acad Sci U S A ; 115(43): E10079-E10088, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297404

RESUMO

The MRE11-RAD50-NBS1 (MRN) complex is well known for participating in DNA damage response pathways in all phases of cell cycle. Here, we show that MRN constitutes a mitosis-specific complex, named mMRN, with a protein, MMAP. MMAP directly interacts with MRE11 and is required for optimal stability of the MRN complex during mitosis. MMAP colocalizes with MRN in mitotic spindles, and MMAP-deficient cells display abnormal spindle dynamics and chromosome segregation similar to MRN-deficient cells. Mechanistically, both MMAP and MRE11 are hyperphosphorylated by the mitotic kinase, PLK1; and the phosphorylation is required for assembly of the mMRN complex. The assembled mMRN complex enables PLK1 to interact with and activate the microtubule depolymerase, KIF2A, leading to spindle turnover and chromosome segregation. Our study identifies a mitosis-specific version of the MRN complex that acts in the PLK1-KIF2A signaling cascade to regulate spindle dynamics and chromosome distribution.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Fuso Acromático/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
3.
J Biol Chem ; 291(42): 21956-21962, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27601467

RESUMO

The replication protein A (RPA) complex binds single-stranded DNA generated at stalled replication forks and recruits other DNA repair proteins to promote recovery of these forks. Here, we identify Ewing tumor-associated antigen 1 (ETAA1), which has been linked to susceptibility to pancreatic cancer, as a new repair protein that is recruited to stalled forks by RPA. We demonstrate that ETAA1 interacts with RPA through two regions, each of which resembles two previously identified RPA-binding domains, RPA70N-binding motif and RPA32C-binding motif, respectively. In response to replication stress, ETAA1 is recruited to stalled forks where it colocalizes with RPA, and this recruitment is diminished when RPA is depleted. Notably, inactivation of the ETAA1 gene increases the collapse level of the stalled replication forks and decreases the recovery efficiency of these forks. Moreover, epistasis analysis shows that ETAA1 stabilizes stalled replication forks in an ataxia telangiectasia and Rad3-related protein (ATR)-independent manner. Thus, our results reveal that ETAA1 is a novel RPA-interacting protein that promotes restart of stalled replication forks.


Assuntos
Antígenos de Superfície/metabolismo , Epistasia Genética/fisiologia , Proteína de Replicação A/metabolismo , Motivos de Aminoácidos , Antígenos de Superfície/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Proteína de Replicação A/genética
4.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35300005

RESUMO

In Schizosaccharomyces pombe, the can1-1 mutation confers resistance to the toxic arginine analog canavanine. This mutation has been assumed to disrupt a gene encoding an arginine transporter. In PomBase, the gene SPBC18H10.16 is currently designated can1. Here, we sequenced the genomes of three can1-1 strains. No mutations were found in SPBC18H10.16. Instead, these strains harbor an R175C mutation in the gene any1 (SPBC18H10.20c). any1 encodes an α-arrestin that acts as a ubiquitin ligase adaptor to downregulate plasma membrane amino acid transporters. Our findings indicate that can1-1 is not a loss-of-function mutation in an amino acid transporter gene, but a possible gain-of-function mutation in a gene encoding a negative regulator of amino acid transporters.

5.
Nat Commun ; 13(1): 957, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177609

RESUMO

The 53BP1-RIF1 pathway antagonizes resection of DNA broken ends and confers PARP inhibitor sensitivity on BRCA1-mutated tumors. However, it is unclear how this pathway suppresses initiation of resection. Here, we identify ASF1 as a partner of RIF1 via an interacting manner similar to its interactions with histone chaperones CAF-1 and HIRA. ASF1 is recruited to distal chromatin flanking DNA breaks by 53BP1-RIF1 and promotes non-homologous end joining (NHEJ) using its histone chaperone activity. Epistasis analysis shows that ASF1 acts in the same NHEJ pathway as RIF1, but via a parallel pathway with the shieldin complex, which suppresses resection after initiation. Moreover, defects in end resection and homologous recombination (HR) in BRCA1-deficient cells are largely suppressed by ASF1 deficiency. Mechanistically, ASF1 compacts adjacent chromatin by heterochromatinization to protect broken DNA ends from BRCA1-mediated resection. Taken together, our findings identify a RIF1-ASF1 histone chaperone complex that promotes changes in high-order chromatin structure to stimulate the NHEJ pathway for DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Reparo do DNA por Junção de Extremidades , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Galinhas , Cromatina/genética , Epistasia Genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Proteínas de Ligação a Telômeros/genética
6.
Nat Commun ; 9(1): 3925, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254264

RESUMO

53BP1 with its downstream proteins, RIF1, PTIP and REV7, antagonizes BRCA1-dependent homologous recombination (HR) and promotes non-homologous end joining (NHEJ) in an unclear manner. Here we show that REV7 forms a complex with two proteins, FAM35A and C20ORF196. We demonstrate that FAM35A preferentially binds single-strand DNA (ssDNA) in vitro, and is recruited to DSBs as a complex with C20ORF196 and REV7 downstream of RIF1 in vivo. Epistasis analysis shows that both proteins act in the same pathway as RIF1 in NHEJ. The defects in HR pathway to repair DSBs and the reduction in resection of broken DNA ends in BRCA1-mutant cells can be largely suppressed by inactivating FAM35A or C20ORF196, indicating that FAM35A and C20ORF196 prevent end resection in these cells. Together, our data identified a REV7-FAM35A-C20ORF196 complex that binds and protects broken DNA ends to promote the NHEJ pathway for DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Células HCT116 , Recombinação Homóloga , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Complexos Multiproteicos/genética , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
7.
Elife ; 62017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29106372

RESUMO

The cellular pathways that restart stalled replication forks are essential for genome stability and tumor prevention. However, how many of these pathways exist in cells and how these pathways are selectively activated remain unclear. Here, we describe two major fork restart pathways, and demonstrate that their selection is governed by 53BP1 and BRCA1, which are known to control the pathway choice to repair double-strand DNA breaks (DSBs). Specifically, 53BP1 promotes a fork cleavage-free pathway, whereas BRCA1 facilitates a break-induced replication (BIR) pathway coupled with SLX-MUS complex-mediated fork cleavage. The defect in the first pathway, but not DSB repair, in a 53BP1 mutant is largely corrected by disrupting BRCA1, and vice versa. Moreover, PLK1 temporally regulates the switch of these two pathways through enhancing the assembly of the SLX-MUS complex. Our results reveal two distinct fork restart pathways, which are antagonistically controlled by 53BP1 and BRCA1 in a DSB repair-independent manner.


Assuntos
Proteína BRCA1/metabolismo , Replicação do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos
8.
Nat Commun ; 6: 6233, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25670504

RESUMO

Non-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku. The crystal structure of PAXX is similar to those of XRCC4 and XLF. Importantly, PAXX-deficient cells are sensitive to DSB-causing agents. Moreover, epistasis analysis demonstrates that PAXX functions together with XLF in response to ionizing radiation-induced complex DSBs, whereas they function redundantly in response to Topo2 inhibitor-induced simple DSBs. Consistently, PAXX and XLF coordinately promote the ligation of complex but not simple DNA ends in vitro. Altogether, our data identify PAXX as a new NHEJ factor and provide insight regarding the organization of NHEJ factors responding to diverse types of DSB ends.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Animais , Antígenos Nucleares/metabolismo , Linhagem Celular , Galinhas , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Células HEK293 , Humanos , Autoantígeno Ku , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa