Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 205(4): 1113-1124, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690654

RESUMO

Disruption in homeostasis of IL-15 is linked to poor maternal and fetal outcomes during pregnancy. The only cells described to respond to IL-15 at the early maternal-fetal interface have been NK cells. We now show a novel population of macrophages, evident in several organs but enriched in the uterus of mice and humans, expressing the ß-chain of the IL-15R complex (CD122) and responding to IL-15. CD122+ macrophages (CD122+Macs) are morphologic, phenotypic, and transcriptomic macrophages that can derive from bone marrow monocytes. CD122+Macs develop in the uterus and placenta with kinetics that mirror IFN activity at the maternal-fetal interface. M-CSF permits macrophages to express CD122, and IFNs are sufficient to drive expression of CD122 on macrophages. Neither type I nor type II IFNs are required to generate CD122+Macs, however. In response to IL-15, CD122+Macs activate the ERK signaling cascade and enhance production of proinflammatory cytokines after stimulation with the TLR9 agonist CpG. Finally, we provide evidence of human cells that phenocopy murine CD122+Macs in secretory phase endometrium during the implantation window and in first-trimester uterine decidua. Our data support a model wherein IFNs local to the maternal-fetal interface direct novel IL-15-responsive macrophages with the potential to mediate IL-15 signals critical for optimal outcomes of pregnancy.


Assuntos
Interferons/metabolismo , Interleucina-15/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Animais , Ilhas de CpG/fisiologia , Citocinas/metabolismo , Decídua/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Transdução de Sinais/fisiologia , Receptor Toll-Like 9/metabolismo , Transcriptoma/fisiologia , Adulto Jovem
2.
Front Mol Biosci ; 11: 1396587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055986

RESUMO

Environmental conditions experienced early in the life of an animal can result in gene expression changes later in its life history. We have previously shown that C. elegans animals that experienced the developmentally arrested and stress resistant dauer stage (postdauers) retain a cellular memory of early-life stress that manifests during adulthood as genome-wide changes in gene expression, chromatin states, and altered life history traits. One consequence of developmental reprogramming in C. elegans postdauer adults is the downregulation of osm-9 TRPV channel gene expression in the ADL chemosensory neurons resulting in reduced avoidance to a pheromone component, ascr#3. This altered response to ascr#3 requires the principal effector of the somatic nuclear RNAi pathway, the Argonaute (AGO) NRDE-3. To investigate the role of the somatic nuclear RNAi pathway in regulating the developmental reprogramming of ADL due to early-life stress, we profiled the mRNA transcriptome of control and postdauer ADL in wild-type and nrde-3 mutant adults. We found 711 differentially expressed (DE) genes between control and postdauer ADL neurons, 90% of which are dependent upon NRDE-3. Additionally, we identified a conserved sequence that is enriched in the upstream regulatory sequences of the NRDE-3-dependent differentially expressed genes. Surprisingly, 214 of the ADL DE genes are considered "germline-expressed", including 21 genes encoding the Major Sperm Proteins and two genes encoding the sperm-specific PP1 phosphatases, GSP-3 and GSP-4. Loss of function mutations in gsp-3 resulted in both aberrant avoidance and attraction behaviors. We also show that an AGO pseudogene, Y49F6A.1 (wago-11), is expressed in ADL and is required for ascr#3 avoidance. Overall, our results suggest that small RNAs and reproductive genes program the ADL mRNA transcriptome during their developmental history and highlight a nexus between neuronal and reproductive networks in calibrating animal neuroplasticity.

3.
PLoS One ; 17(6): e0269553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35671274

RESUMO

Interferon gamma (IFN-γ) is the main cytokine driving organ dysfunction in Familial Hemophagocytic Lymphohistiocytosis (FHL). Blockade of IFN-γ pathway ameliorates FHL hepatitis, both in animal models and in humans with FHL. Hepatocytes are known to express IFN-γ receptor (IFN-γ-R). However, whether IFN-γ induced hepatitis in FHL is a lymphocyte or liver intrinsic response to the cytokine has yet to be elucidated. Using a IFNgR-/- bone marrow chimeric model, this study showed that non-hematopoietic IFN-γ response is critical for development of FHL hepatitis in LCMV-infected Prf1-/- mice. Lack of hepatic IFN-γ responsiveness results in reduced hepatitis as measured by hepatomegaly, alanine aminotransferase (ALT) levels and abrogated histologic endothelial inflammation. In addition, IFN-γ non-hematopoietic response was critical in activation of lymphocytes by soluble interleukin 2 receptor (sIL-2r) and recruitment of CD8+ effector T lymphocytes (CD8+ CD44hi CD62Llo) (Teff) and inflammatory monocytes. Lastly, non-hematopoietic IFN-γ response results in increased hepatic transcription of type 1 immune response and oxidative stress response pathways, while decreasing transcription of genes involved in extracellular matrix (ECM) production. In summary, these findings demonstrate that there is a hepatic transcriptional response to IFN-γ, likely critical in the pathogenesis of FHL hepatitis and hepatic specific responses could be a therapeutic target in this disorder.


Assuntos
Hepatite , Linfo-Histiocitose Hemofagocítica , Animais , Linfócitos T CD8-Positivos , Hepatite/patologia , Interferon gama/metabolismo , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/patologia , Camundongos
4.
Cell Rep ; 24(13): 3383-3392.e5, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257200

RESUMO

Physicians have observed that surgical wounds in the elderly heal with thinner scars than wounds in young patients. Understanding this phenomenon may reveal strategies for promoting scarless wound repair. We show that full-thickness skin wounds in aged but not young mice fully regenerate. Exposure of aged animals to blood from young mice by parabiosis counteracts this regenerative capacity. The secreted factor, stromal-derived factor 1 (SDF1), is expressed at higher levels in wounded skin of young mice. Genetic deletion of SDF1 in young skin enhanced tissue regeneration. In aged mice, enhancer of zeste homolog 2 (EZH2) and histone H3 lysine 27 trimethylation are recruited to the SDF1 promoter at higher levels, and pharmacologic inhibition of EZH2 restores SDF1 induction and prevents tissue regeneration. Similar age-dependent EZH2-mediated SDF1 suppression occurs in human skin. Our findings counter the current dogma that tissue function invariably declines with age and suggest new therapeutic strategies in regenerative medicine.


Assuntos
Envelhecimento/metabolismo , Quimiocina CXCL12/metabolismo , Pele/metabolismo , Cicatrização , Envelhecimento/patologia , Animais , Células Cultivadas , Quimiocina CXCL12/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pele/patologia
5.
Elife ; 52016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27351255

RESUMO

Environmental stress during early development can impact adult phenotypes via programmed changes in gene expression. C. elegans larvae respond to environmental stress by entering the stress-resistant dauer diapause pathway and resume development once conditions improve (postdauers). Here we show that the osm-9 TRPV channel gene is a target of developmental programming and is down-regulated specifically in the ADL chemosensory neurons of postdauer adults, resulting in a corresponding altered olfactory behavior that is mediated by ADL in an OSM-9-dependent manner. We identify a cis-acting motif bound by the DAF-3 SMAD and ZFP-1 (AF10) proteins that is necessary for the differential regulation of osm-9, and demonstrate that both chromatin remodeling and endo-siRNA pathways are major contributors to the transcriptional silencing of the osm-9 locus. This work describes an elegant mechanism by which developmental experience influences adult phenotypes by establishing and maintaining transcriptional changes via RNAi and chromatin remodeling pathways.


Assuntos
Comportamento Animal , Caenorhabditis elegans/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Límbico/embriologia , Percepção Olfatória , Interferência de RNA , Olfato , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa