Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Pathol Int ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837539

RESUMO

Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.

2.
J Gastroenterol Hepatol ; 38(5): 783-790, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36747447

RESUMO

BACKGROUND AND AIM: There are very few reports comparing the use of the University of Wisconsin solution and histidine-tryptophan-ketoglutarate solution as machine perfusion solutions for marginal liver grafts. We aimed to clarify whether the use of the histidine-tryptophan-ketoglutarate solution in hypothermic machine perfusion improves the split-liver graft function in a large animal model. METHODS: Porcine split-liver grafts were created by 75% liver resection. Hypothermic machine perfusion experimental groups were divided as follows: Group 1, perfusate, University of Wisconsin gluconate solution (UW group; n = 5), and Group 2, perfusate, histidine-tryptophan-ketoglutarate solution (HTK group; n = 4). After 4 h of preservation, the liver function was evaluated using an isolated liver reperfusion model for 2 h. RESULTS: In the HTK group, the portal vein and hepatic artery resistance during hypothermic machine perfusion and the portal vein resistance during isolated liver reperfusion were lower than those in the UW group. In addition, the total Suzuki score for hepatic ischemia-reperfusion injury in the HTK group was significantly better than that in the UW group. The number of anti-ETS-related genes staining-positive sinusoid epithelial cell nuclei in the HTK group was higher than that in the UW group (not significant). CONCLUSIONS: The histidine-tryptophan-ketoglutarate solution can be perfused with lower vascular resistance than the University of Wisconsin solution, reducing shear stress and preventing sinusoid epithelial cell injury in marginal grafts used as split-liver grafts.


Assuntos
Soluções para Preservação de Órgãos , Preservação de Órgãos , Animais , Suínos , Soluções para Preservação de Órgãos/farmacologia , Fígado , Glutationa/farmacologia , Insulina , Perfusão
3.
Int J Cancer ; 150(10): 1640-1653, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34935134

RESUMO

Hepatocellular carcinoma (HCC) activates platelets through the action of adjacent sinusoidal cells. Activated platelets bind to tumor-associated endothelial cells and release growth factors that promote tumor progression. We hypothesized that platelets encapsulated with tumor inhibitors would function as drug carriers for tumor therapy. We propose a therapeutic strategy for HCC using autologous platelets encapsulating multiple tyrosine kinase inhibitors in a rat chemically induced HCC model. Sorafenib or lenvatinib was encapsulated in platelets isolated from tumor-bearing rats in vitro. The rats were divided into groups that received repeated intravenous injections (twice a week for 10 weeks) of the following materials: placebo, sorafenib (SOR), lenvatinib (LEN), autologous platelets, autologous platelets encapsulating sorafenib (SOR-PLT) and autologous platelets encapsulating lenvatinib (LEN-PLT). The therapeutic effect was then analyzed by ultrasonography (US) and histopathological analysis. Histopathological and US analysis demonstrated extensive tumor necrosis in the tumor tissue of SOR-PLT or LEN-PLT, but not in other experimental groups. By liquid chromatography-mass spectrometry, more abundant sorafenib was detected in tumor tissues after SOR-PLT administration than in surrounding normal tissues, but no such difference in sorafenib level was observed with SOR administration. Therefore, the use of autologous platelets encapsulating drugs might be a novel therapeutic strategy for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Endoteliais/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Ratos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
4.
Am J Pathol ; 191(9): 1580-1591, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34119474

RESUMO

Nonalcoholic fatty liver disease often progresses to cirrhosis and causes liver cancer, but mechanisms of its progression are yet to be elucidated. Although nonalcoholic fatty liver disease is often associated with abnormal portal circulation, there have not been any experimental studies to test its pathogenic role. Here, whether decreased portal circulation affected the pathology of nonalcoholic steatohepatitis (NASH) was examined using congenital portosystemic shunt (PSS) in C57BL/6J mice. Whereas PSS significantly attenuated free radical-mediated carbon tetrachloride injury, it augmented pericellular fibrosis in the centrilobular area induced by a 0.1% methionine choline-deficient l-amino acid-defined high-fat diet (CDAHFD). PSS aggravated ductular reaction and increased the expression of connective tissue growth factor. Pimonidazole immunohistochemistry of the liver revealed that the centrilobular area of PSS-harboring mice was more hypoxic than that of control mice. Although tissue hypoxia was observed in the fibrotic area in CDAHFD-induced NASH in both control and PSS-harboring mice, it was more profound in the latter, which was associated with higher carbonic anhydrase 9 and vascular endothelial growth factor expression and neovascularization in the fibrotic area. Furthermore, partial ligation of the portal vein also augmented pericellular fibrosis and ductular reaction induced by a CDAHFD. These results demonstrate that decreased portal circulation, which induces hypoxia due to disrupted intralobular perfusion, is an important aggravating factor of liver fibrosis in NASH.


Assuntos
Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Sistema Porta/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Veia Porta/anormalidades , Malformações Vasculares/complicações
5.
Hepatology ; 73(6): 2510-2526, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32969030

RESUMO

BACKGROUND AND AIMS: Mitogen-activated protein kinase kinase (MKK) 7 and MKK4 are upstream activators of c-Jun NH2 -terminal kinases (JNKs) and have been shown to be required for the early development of the liver. Although it has been suggested that MKK7 might be involved in the regulation of hepatocyte proliferation, the functional role of MKK7 in the liver has remained unclear. APPROACH AND RESULTS: Here, we examined phenotypic alterations in liver-specific or hepatocyte/hematopoietic cell-specific MKK7 knockout (KO) mice, which were generated by crossing MKK7LoxP/LoxP with albumin-cyclization recombination (Alb-Cre) or myxovirus resistance protein 1-Cre mice, respectively. The livers of Alb-Cre-/+ MKK7LoxP/LoxP mice developed without discernible tissue disorganization. MKK7 KO mice responded normally to liver injuries incurred by partial hepatectomy or injection of CCl4 . However, tissue repair following CCl4 -induced injury was delayed in MKK7 KO mice compared with that of control mice. Furthermore, after repeated injections of CCl4 for 8 weeks, the liver in MKK7 KO mice showed intense fibrosis with increased protractive hepatocyte proliferation, suggesting that MKK7 deficiency might affect regenerative responses of hepatocytes in the altered tissue microenvironment. MKK7 KO hepatocytes demonstrated normal proliferative activity when cultured in monolayers. However, MKK7 KO significantly suppressed branching morphogenesis of hepatocyte aggregates within a collagen gel matrix. Microarray analyses revealed that suppression of branching morphogenesis in MKK7 KO hepatocytes was associated with a reduction in mRNA expression of transgelin, glioma pathogenesis related 2, and plasminogen activator urokinase-type (Plau); and forced expression of these genes in MKK7 KO hepatocytes partially recovered the attenuated morphogenesis. Furthermore, hepatocyte-specific overexpression of Plau rescued the impaired tissue repair of MKK7 KO mice following CCl4 -induced injury. CONCLUSIONS: MKK7 is dispensable for the regenerative proliferation of hepatocytes but plays important roles in repair processes following parenchymal destruction, possibly through modulation of hepatocyte-extracellular matrix interactions.


Assuntos
Matriz Extracelular/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Fígado , MAP Quinase Quinase 7/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Hepatectomia/métodos , Fígado/crescimento & desenvolvimento , Fígado/lesões , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Morfogênese/fisiologia
6.
Cancer Sci ; 112(8): 3111-3124, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051011

RESUMO

The two principal histological types of primary liver cancers, hepatocellular carcinoma (HCC) and cholangiocarcinoma, can coexist within a tumor, comprising combined hepatocellular-cholangiocarcinoma (cHCC-CCA). Although the possible involvement of liver stem/progenitor cells has been proposed for the pathogenesis of cHCC-CCA, the cells might originate from transformed hepatocytes that undergo ductular transdifferentiation or dedifferentiation. We previously demonstrated that concomitant introduction of mutant HRASV12 (HRAS) and Myc into mouse hepatocytes induced dedifferentiated tumors that expressed fetal/neonatal liver genes and proteins. Here, we examine whether the phenotype of HRAS- or HRAS/Myc-induced tumors might be affected by the disruption of the Trp53 gene, which has been shown to induce biliary differentiation in mouse liver tumors. Hepatocyte-derived liver tumors were induced in heterozygous and homozygous p53-knockout (KO) mice by hydrodynamic tail vein injection of HRAS- or Myc-containing transposon cassette plasmids, which were modified by deleting loxP sites, with a transposase-expressing plasmid. The HRAS-induced and HRAS/Myc-induced tumors in the wild-type mice demonstrated histological features of HCC, whereas the phenotype of the tumors generated in the p53-KO mice was consistent with cHCC-CCA. The expression of fetal/neonatal liver proteins, including delta-like 1, was detected in the HRAS/Myc-induced but not in the HRAS-induced cHCC-CCA tissues. The dedifferentiation in the HRAS/Myc-induced tumors was more marked in the homozygous p53-KO mice than in the heterozygous p53-KO mice and was associated with activation of Myc and YAP and suppression of ERK phosphorylation. Our results suggest that the loss of p53 promotes ductular differentiation of hepatocyte-derived tumor cells through either transdifferentiation or Myc-mediated dedifferentiation.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Desdiferenciação Celular , Transdiferenciação Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Heterozigoto , Homozigoto , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
J Surg Res ; 245: 410-419, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437648

RESUMO

BACKGROUND: The present study examined the impact of oxygenated machine perfusion on preservation of liver grafts donated after cardiac death by measuring sinusoidal endothelial injury and microcirculatory disturbances. MATERIALS AND METHODS: Fifteen porcine livers were retrieved 60 min after warm ischemia and allocated into three groups as follows: (1) CS group: static cold storage, (2) HMP group: oxygenated hypothermic perfusion preservation, (3) SNMP group: oxygenated subnormothermic perfusion preservation. The liver grafts donated after cardiac death were preserved for 4 h in different treatment conditions mentioned previously, then subject to ex vivo reperfusion for 2 h using diluted allogeneic blood. The hemodynamic parameters, liver function tests, tissue adenosine triphosphate (ATP) levels, and immunohistochemical findings were investigated. RESULTS: The number of sinusoidal epithelial cells and trabecular structures were maintained after 4 h of preservation in the CS, HMP, and SNMP group. Liver tissue ATP levels after 4 h of preservation in the HMP and SNMP groups were significantly higher compared with that in the CS group. The sinusoidal epithelial cells were significantly exfoliated to a more severe extent in the CS group than in the HMP and SNMP groups. Intrasinusoidal platelet aggregation occurred more frequently in the CS group than in the HMP and SNMP groups. CONCLUSIONS: The results indicated that oxygenated machine perfusion preservation was important to prevent the depletion of tissue ATP and maintain sinusoidal homeostasis regardless of the perfusate temperature. Our findings suggest oxygenated machine perfusion preservation as an effective alternative to static cold storage.


Assuntos
Transplante de Fígado , Fígado/irrigação sanguínea , Microcirculação , Preservação de Órgãos , Perfusão/métodos , Animais , Endotélio Vascular/patologia , Fígado/metabolismo , Fígado/patologia , Consumo de Oxigênio , Suínos
8.
Proc Natl Acad Sci U S A ; 114(19): E3806-E3815, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439013

RESUMO

The carcinogenic mechanism of extrahepatic cholangiocarcinoma (ECC) is unclear, due at least in part to the lack of an appropriate mouse model. Because human studies have reported frequent genetic alterations in the Ras- and TGFß/SMAD-signaling pathways in ECC, mice with tamoxifen-inducible, duct-cell-specific Kras activation and a TGFß receptor type 2 (TGFßR2) deletion were first generated by crossing LSL-KrasG12D , Tgfbr2flox/flox , and K19CreERT mice (KT-K19CreERT ). However, KT-K19CreERT mice showed only mild hyperplasia of biliary epithelial cells (BECs) in the extrahepatic bile duct (EHBD) and died within 7 wk, probably a result of lung adenocarcinomas. Next, to analyze the additional effect of E-cadherin loss, KT-K19CreERT mice were crossed with CDH1flox/flox mice (KTC-K19CreERT ). Surprisingly, KTC-K19CreERT mice exhibited a markedly thickened EHBD wall accompanied by a swollen gallbladder within 4 wk after tamoxifen administration. Histologically, invasive periductal infiltrating-type ECC with lymphatic metastasis was observed. Time-course analysis of EHBD revealed that recombined BECs lining the bile duct lumen detached due to E-cadherin loss, whereas recombined cells could survive in the peribiliary glands (PBGs), which are considered a BEC stem-cell niche. Detached dying BECs released high levels of IL-33, as determined by microarray analysis using biliary organoids, and stimulated inflammation and a regenerative response by PBGs, leading eventually to ECC development. Cell lineage tracing suggested PBGs as the cellular origin of ECC. IL-33 cooperated with Kras and TGFßR2 mutations in the development of ECC, and anti-IL-33 treatment suppressed ECC development significantly. Thus, this mouse model provided insight into the carcinogenic mechanisms, cellular origin, and potential therapeutic targets of ECC.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Interleucina-33/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/lesões , Ductos Biliares/patologia , Caderinas/genética , Caderinas/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Epitélio/lesões , Epitélio/metabolismo , Epitélio/patologia , Interleucina-33/genética , Camundongos , Camundongos Transgênicos , Mutação , Metástase Neoplásica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
9.
FASEB J ; 32(8): 4544-4559, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553830

RESUMO

A main feature of Fabry disease is nephropathy, with polyuria an early manifestation; however, the mechanism that underlies polyuria and affected tubules is unknown. To increase globotriaosylceramide (Gb3) levels, we previously crossbred asymptomatic Glatm mice with transgenic mice that expressed human Gb3 synthase (A4GALT) and generated the GlatmTg(CAG-A4GALT) symptomatic Fabry model mice. Additional analyses revealed that these mice exhibit polyuria and renal dysfunction without remarkable glomerular damage. In the present study, we investigated the mechanism of polyuria and renal dysfunction in these mice. Gb3 accumulation was mostly detected in the medulla; medullary thick ascending limbs (mTALs) were the most vacuolated tubules. mTAL cells contained lamellar bodies and had lost their characteristic structure ( i.e., extensive infolding and numerous elongated mitochondria). Decreased expression of the major molecules-Na+-K+-ATPase, uromodulin, and Na+-K+-2Cl- cotransporter-that are involved in Na+ reabsorption in mTALs and the associated loss of urine-concentrating ability resulted in progressive water- and salt-loss phenotypes. GlatmTg(CAG-A4GALT) mice exhibited fibrosis around mTALs and renal dysfunction. These and other features were consistent with pathologic findings in patients with Fabry disease. Results demonstrate that mTAL dysfunction causes polyuria and renal impairment and contributes to the pathophysiology of Fabry nephropathy.-Maruyama, H., Taguchi, A., Nishikawa, Y., Guili, C., Mikame, M., Nameta, M., Yamaguchi, Y., Ueno, M., Imai, N., Ito, Y., Nakagawa, T., Narita, I., Ishii, S. Medullary thick ascending limb impairment in the GlatmTg(CAG-A4GALT) Fabry model mice.


Assuntos
Doença de Fabry/patologia , Nefropatias/patologia , Medula Renal/patologia , Animais , Modelos Animais de Doenças , Doença de Fabry/metabolismo , Capacidade de Concentração Renal/fisiologia , Nefropatias/metabolismo , Medula Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliúria/metabolismo , Poliúria/patologia , Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Triexosilceramidas/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(1): E71-80, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699479

RESUMO

Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver (LMob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. LMob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial-mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-ß)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 (Yap1) and partially dependent on PDZ-binding motif (Taz) and Tgfbr2, but independent of connective tissue growth factor (Ctgf). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-ß pathway may be effective treatment for cHC-CCs and ICCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/metabolismo , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Aciltransferases , Animais , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Transição Epitelial-Mesenquimal , Genes Supressores de Tumor , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Nus , Fosfoproteínas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
11.
Am J Pathol ; 187(12): 2711-2725, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28964793

RESUMO

Activation of the phosphoinositide 3-kinase-AKT, Yes-associated protein (YAP), and MYC pathways is involved in human liver cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). However, the nature of the interactions among these pathways has remained poorly understood. Herein, we demonstrate the coordination of these pathways during the formation of mouse liver tumors induced by hepatocyte-specific somatic integration of myristoylated AKT, mutant YAP, Myc, or their combinations. Although the introduction of YAP or Myc alone was inefficient in inducing tumors, these proteins accelerated tumorigenesis induced by AKT. The generated tumors demonstrated various histological features: low-grade HCC by AKT/Myc, CC by AKT/YAP, and high-grade HCC by AKT/Myc/YAP. CC induced by AKT/YAP was associated with activation of the Notch pathway. Interestingly, the combination of Myc and YAP generated tumors composed of hepatoblast/stem-like cells expressing mRNA for Afp, Dlk1, Nanog, and Sox2 and occasionally forming immature ducts. Finally, immunohistochemical analysis revealed that human HCC and CC were predominantly associated with phosphorylation of S6 and glycogen synthase kinase-3ß, respectively, and >60% of CC cases were positive for both phosphorylated glycogen synthase kinase--3ß and YAP. Our study suggests that hepatocyte-derived tumors demonstrate a wide spectrum of tumor phenotypes, including HCC, CC, and hepatoblastoma-like, through the combinatory effects of the oncogenic pathways and that the state of the phosphoinositide 3-kinase-AKT pathway is a key determinant of differentiation.


Assuntos
Carcinogênese/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Carcinogênese/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
12.
J Electrocardiol ; 51(2): 236-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29223305

RESUMO

We describe a patient with perimitral atrial flutter (PMF) following the atrial fibrillation ablation and the linear ablation at the mitral isthmus (MI). From both the activation and the voltage maps using ultra-high resolution mapping, we detected the epicardial connection through the coronary sinus (CS) within the entire reentrant circuit. Point ablation within the CS, not additional linear MI ablation from the endocardium terminates PMF, with a bidirectional block across the low voltage area at the MI.


Assuntos
Flutter Atrial/fisiopatologia , Flutter Atrial/cirurgia , Seio Coronário/cirurgia , Mapeamento Epicárdico/métodos , Valva Mitral/cirurgia , Idoso , Flutter Atrial/etiologia , Seio Coronário/fisiopatologia , Eletrocardiografia , Humanos , Masculino , Valva Mitral/fisiopatologia
13.
Mol Carcinog ; 56(2): 478-488, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253992

RESUMO

The BrafV637E mutation is frequently reported in mouse hepatic tumors, depending on the mouse strain, and corresponds to the human BrafV600E mutation. In this study, we detected the BrafV637E mutation by whole-exome analysis in 4/4 hepatic tumors induced by neonatal treatment with diethylnitrosamine (DEN) in male B6C3F1 mice. We also detected the BrafV637E mutation in 54/63 (85.7%) hepatic lesions, including microscopic foci and grossly visible tumors, by PCR-direct sequencing. Although the mutation was detected in 5/7 (71.4%) hepatic tumors induced by neonatal DEN treatment followed by repeated CCl4 administration, it was not detected in 24 tumors induced by CCl4 treatment without DEN or in eight spontaneous lesions in B6C3F1 mice, suggesting that the mutation is induced by the genotoxic action of DEN. The DEN-induced tumors exhibited hyperphosphorylation of ERK1 and Akt, suggesting that the BrafV637E mutation might activate the MAPK and Akt pathways. Moreover, the DEN-induced tumors overexpressed mRNAs for the oncogene-induced senescence (OIS) markers such as p15Ink4b and p19Arf as well as pro-survival/pro-proliferative cytokines/chemokines such as complement C5/C5a, ICAM-1, IL-1 receptor antagonist and CXCL9, suggesting that the BrafV637E mutation influences the expression of genes involved in either OIS or cellular growth/survival. Liver-specific expression of mutated Braf under control of the albumin enhancer/promoter resulted in an enlarged liver that consisted entirely of small basophilic hepatocytes resembling DEN-induced preneoplastic hepatocytes with ERK1/Akt hyperphosphorylation and C5/C5a overexpression. These results indicate that the BrafV637E mutation induces hepatocytic changes in DEN-induced hepatic tumors. © 2016 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.


Assuntos
Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fígado/patologia , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/patologia , Ciclo Celular , Citocinas/análise , Dietilnitrosamina , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Proc Natl Acad Sci U S A ; 111(3): 1090-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395807

RESUMO

E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial-mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial-mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver.


Assuntos
Caderinas/metabolismo , Carcinogênese , Colangite Esclerosante/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Colangite/metabolismo , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatócitos/citologia , Inflamação , Fígado/patologia , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Metástase Neoplásica , Fenótipo , Prognóstico , Células-Tronco/citologia
15.
Mol Pharm ; 13(7): 2283-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27187083

RESUMO

Tumor hypoxia, which is associated with poor prognosis in cancer, is known to lead to resistance to radiotherapy and anticancer chemotherapy. Impaired drug penetration in hypoxic regions has been recognized as an essential barrier to drug development in solid tumors. Here, we propose novel hypoxia-activated prodrugs, which drastically improved the penetration property of commonly used anticancer drugs in the hypoxic region. In this design, conventional anticancer drugs were modified with 2-nitroimidazole derivatives. The most important point of this study was that the prodrug designed formed a 6-membered cyclic structure to allow liberation of the active drug in the hypoxic region. This design markedly increased the selectivity of the hypoxia-targeted prodrug, resulting in significant reduction of adverse effects in the normoxic region. In vitro studies confirmed the selective activation under hypoxic conditions. In vivo studies showed drastic reduction of adverse effects associated with conventional anticancer drugs and improvement of the survival rate of mice. Immunofluorescence analyses confirmed that the designed prodrug had a tendency to localize at the hypoxic region, in contrast to conventional anticancer drugs, which localize only at the normoxic region.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nitroimidazóis/farmacologia , Permeabilidade
16.
J Biol Chem ; 289(11): 7589-98, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24482234

RESUMO

It has been shown that mature hepatocytes compensate tissue damages not only by proliferation and/or hypertrophy but also by conversion into cholangiocyte-like cells. We found that Sry HMG box protein 9-positive (Sox9(+)) epithelial cell adhesion molecule-negative (EpCAM(-)) hepatocyte nuclear factor 4α-positive (HNF4α(+)) biphenotypic cells showing hepatocytic morphology appeared near EpCAM(+) ductular structures in the livers of mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. When Mx1-Cre:ROSA mice, which were injected with poly(I:C) to label mature hepatocytes, were fed with the DDC diet, we found LacZ(+)Sox9(+) cells near ductular structures. Although Sox9(+)EpCAM(-) cells adjacent to expanding ducts likely further converted into ductular cells, the incidence was rare. To know the cellular characteristics of Sox9(+)EpCAM(-) cells, we isolated them as GFP(+)EpCAM(-) cells from DDC-injured livers of Sox9-EGFP mice. Sox9(+)EpCAM(-) cells proliferated and could differentiate to functional hepatocytes in vitro. In addition, Sox9(+)EpCAM(-) cells formed cysts with a small central lumen in collagen gels containing Matrigel® without expressing EpCAM. These results suggest that Sox9(+)EpCAM(-) cells maintaining biphenotypic status can establish cholangiocyte-type polarity. Interestingly, we found that some of the Sox9(+) cells surrounded luminal spaces in DDC-injured liver while they expressed HNF4α. Taken together, we consider that in addition to converting to cholangiocyte-like cells, Sox9(+)EpCAM(-) cells provide luminal space near expanded ductular structures to prevent deterioration of the injuries and potentially supply new hepatocytes to repair damaged tissues.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática , Fígado/fisiologia , Fatores de Transcrição SOX9/metabolismo , Animais , Diferenciação Celular , Molécula de Adesão da Célula Epitelial , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Imuno-Histoquímica , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fenótipo , Piridinas/química , Células-Tronco/citologia
17.
Cancer Sci ; 106(8): 972-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26011625

RESUMO

Hepatocellular carcinoma develops in either chronically injured or seemingly intact livers. To explore the tumorigenic mechanisms underlying these different conditions, we compared the mRNA expression profiles of mouse hepatocellular tumors induced by the repeated injection of CCl4 or a single diethylnitrosamine (DEN) injection using a cDNA microarray. We identified tumor-associated genes that were expressed differentially in the cirrhotic CCl4 model (H19, Igf2, Cbr3, and Krt20) and the non-cirrhotic DEN model (Tff3, Akr1c18, Gpc3, Afp, and Abcd2) as well as genes that were expressed comparably in both models (Ly6d, Slpi, Spink3, Scd2, and Cpe). The levels and patterns of mRNA expression of these genes were validated by quantitative RT-PCR analyses. Most of these genes were highly expressed in mouse livers during the fetal/neonatal periods. We also examined the mRNA expression of these genes in mouse tumors induced by thioacetamide, another cirrhotic inducer, and those that developed spontaneously in non-cirrhotic livers and found that they shared a similar expression profile as that observed in CCl4 -induced and DEN-induced tumors, respectively. There was a close relationship between the expression levels of Igf2 and H19 mRNA, which were activated in the cirrhotic models. Our results show that mouse liver tumors reactivate fetal/neonatal genes, some of which are specific to cirrhotic or non-cirrhotic modes of pathogenesis.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Animais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização In Situ , Cirrose Hepática/complicações , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
18.
Am J Pathol ; 184(11): 3001-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193593

RESUMO

Mature hepatocytes are suggested to possess a capacity for bile ductular transdifferentiation, but whether and how hepatocytes contribute to ductular reaction in chronic liver diseases has not been elucidated. We examined whether mouse hepatocytes can transdifferentiate into bile ductular cells in vitro, using a three-dimensional collagen gel culture method, and in vivo, using a liver repopulation model in which ß-galactosidase-positive hepatocytes from Alb-Cre × ROSA26R mice were transplanted into the liver of wild-type mice. We further examined the relative contribution of intrinsic hepatocytes in ductular reaction in a hepatocyte lineage-tracing model using Mx1-Cre × ROSA26R mice treated with polyinosinic-polycytidylic acid. Within collagen gels, hepatocytes exhibited branching morphogenesis associated with the emergence of bile duct-like phenotype. In the liver repopulation model, many ß-galactosidase-positive, hepatocyte-derived bile ductular structures were identified; these markedly increased after liver injury. In Mx1-Cre × ROSA26R mice, relatively minor but significant contributions of hepatocyte-derived bile ductules were observed in both periportal and centrilobular ductular reaction. As the centrilobular ductular reaction progressed, the portal ducts or ductules migrated toward the injured area and joined with hepatocyte-derived ductules, leaving the portal tract without biliary structures. We conclude that hepatocytes and bile ducts or ductules are important sources of ductular reaction and that the intrahepatic biliary system undergoes remarkable remodeling in response to chronic liver injury.


Assuntos
Ductos Biliares/patologia , Sistema Biliar/patologia , Transdiferenciação Celular/fisiologia , Hepatócitos/patologia , Hepatopatias/patologia , Animais , Linhagem da Célula , Camundongos
20.
J Cell Biochem ; 114(4): 831-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23097189

RESUMO

We previously showed that mature hepatocytes could transdifferentiate into bile ductular cells when placed in a collagen-rich microenvironment. To explore the mechanism of transdifferentiation, we examined whether inflammatory cytokines affected the phenotype of hepatocytes in a three-dimensional culture system. Spheroidal aggregates of rat hepatocytes were embedded within a type I collagen gel matrix and cultured in the presence of various cytokines. In the control, hepatocytes gradually lost expression of albumin, tyrosine aminotransferase, and hepatocyte nuclear factor (HNF)-4α, while aberrantly expressed bile ductular markers, including cytokeratin 19 (CK 19) and spermatogenic immunoglobulin superfamily (SgIGSF). Among the cytokines examined, tumor necrosis factor (TNF)-α inhibited expression of albumin and HNF-4α, both at mRNA and protein levels. After culturing for 2 weeks with TNF-α, hepatocytic spheroids were transformed into extensively branching tubular structures composed of CK 19- and SgIGSF-positive small cuboidal cells. These cells responded to secretin with an increase in secretion and expressed functional bile duct markers. TNF-α also induced the phosphorylation of Jun N-terminal kinase (JNK) and c-Jun, and the morphogenesis was inhibited by SP600125, a specific JNK inhibitor. Furthermore, in chronic rat liver injury induced by CCl(4) , ductular reaction in the centrilobular area demonstrated strong nuclear staining of phosphorylated c-Jun. Our results demonstrate that TNF-α promotes the ductular transdifferentiation of hepatocytes and suggest a role of TNF-α in the pathogenesis of ductular reaction.


Assuntos
Transdiferenciação Celular , Hepatócitos/citologia , Fator de Necrose Tumoral alfa/metabolismo , Albuminas/genética , Albuminas/metabolismo , Animais , Antracenos/farmacologia , Ductos Biliares/metabolismo , Tetracloreto de Carbono/efeitos adversos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Forma Celular/efeitos dos fármacos , Células Cultivadas , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Colágeno Tipo I/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Queratina-19/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Morfogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Transgênicos , Secretina/farmacologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa