Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Virol ; 98(5): e0041624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624232

RESUMO

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued, enabling the virus to escape from host immunity by changing its spike antigen, while biased toward the receptor-binding domain and N-terminal domain. Here, we isolated a novel pan-SARS-CoV-2 neutralizing antibody (which we named MO11) for even the recent dominators XBB.1.16 and EG.5.1, from a convalescent patient who had received three doses of an original mRNA COVID-19 vaccination. A cryo-electron microscopy analysis of the spike-MO11 complex at 2.3 Å atomic resolution revealed that it recognizes a conserved epitope hidden behind a glycan shield at N331 on subdomain 1 (SD1), holding both the N- and C-terminal segments comprising SD1. Our identification of MO11 unveiled the functional importance of SD1 for the spike's function, and we discuss the potential availability of a novel common epitope among the SARS-CoV-2 variants.IMPORTANCENovel severe acute respiratory syndrome coronavirus 2 variants with immune evasion ability are still repeatedly emerging, nonetheless, a part of immunity developed in responding to the antigen of earlier variants retains efficacy against recent variants irrespective of the numerous mutations. In exploration for the broadly effective antibodies, we identified a cross-neutralizing antibody, named MO11, from the B cells of the convalescent patient. MO11 targets a novel epitope in subdomain 1 (SD1) and was effective against all emerging variants including XBB.1.16 and EG.5.1. The neutralizing activity covering from D614G to EG.5.1 variants was explained by the conservation of the epitope, and it revealed the importance of the subdomain on regulating the function of the antigen for viral infection. Demonstrated identification of the neutralizing antibody that recognizes a conserved epitope implies basal contribution of such group of antibodies for prophylaxis against COVID-19.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , Microscopia Crioeletrônica , Domínios Proteicos , Vacinas contra COVID-19/imunologia
2.
J Virol ; 97(9): e0071823, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671864

RESUMO

Nascent nucleocapsids of herpesviruses acquire a primary envelope during their nuclear export by budding through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes. This process is mediated by a conserved viral heterodimeric complex designated the nuclear egress complex, which consists of the nuclear matrix protein and the nuclear membrane protein. In addition to its essential roles during nuclear egress, the nuclear matrix protein has been shown to interact with intracellular signaling pathway molecules including NF-κB and IFN-ß to affect viral or cellular gene expression. The human herpesvirus 6A (HHV-6A) U37 gene encodes a nuclear matrix protein, the role of which has not been analyzed. Here, we show that HHV-6A U37 activates the heat shock element promoter and induces the accumulation of the molecular chaperone Hsp90. Mechanistically, HHV-6A U37 interacts with heat shock transcription factor 1 (HSF1) and induces its phosphorylation at Ser-326. We report that pharmacological inhibition of HSF1, Hsp70, or Hsp90 decreases viral protein accumulation and viral replication. Taken together, our results lead us to propose a model in which HHV-6A U37 activates the heat shock response to support viral gene expression and replication. IMPORTANCE Human herpesvirus 6A (HHV-6A) is a dsDNA virus belonging to the Roseolovirus genus within the Betaherpesvirinae subfamily. It is frequently found in patients with neuroinflammatory disease, although its pathogenetic role, if any, awaits elucidation. The heat shock response is important for cell survival under stressful conditions that disrupt homeostasis. Our results indicate that HHV-6A U37 activates the heat shock element promoter and leads to the accumulation of heat shock proteins. Next, we show that the heat shock response is important for viral replication. Overall, our findings provide new insights into the function of HHV-6A U37 in host cell signaling and identify potential cellular targets involved in HHV-6A pathogenesis and replication.


Assuntos
Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Herpesvirus Humano 6 , Proteínas da Matriz Viral , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Herpesvirus Humano 6/metabolismo , Herpesvirus Humano 6/patogenicidade , Proteínas da Matriz Viral/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Regiões Promotoras Genéticas , Replicação Viral , Fosforilação , Regulação Viral da Expressão Gênica , Transdução de Sinais
3.
J Virol ; 97(6): e0028623, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37191569

RESUMO

We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants. IMPORTANCE Omicron variants of SARS-CoV-2 acquired escape ability from host immunity and authorized antibody therapeutics and thereby have been spreading worldwide. We reported that patients infected with an early SARS-CoV-2 variant, D614G, and who received subsequent two-dose mRNA vaccination have high neutralizing antibody titer against Omicron lineages. It was speculated that the patients have neutralizing antibodies broadly effective against SARS-CoV-2 variants by targeting common epitopes. Here, we explored human monoclonal antibodies from B cells of the patients. One of the monoclonal antibodies, named MO1, showed high potency against broad SARS-CoV-2 variants including BA.2.75 and BA.5 variants. The results prove that monoclonal antibodies that have common neutralizing epitopes among several Omicrons were produced in patients infected with D614G and who received mRNA vaccination.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19 , Epitopos , Animais , Cricetinae , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Masculino , Feminino , Pessoa de Meia-Idade , Vacinas de mRNA
4.
J Virol ; 96(19): e0126422, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154610

RESUMO

The stimulus-induced cAMP response element (CRE)-binding protein (CREB) family of transcription factors bind to CREs to regulate diverse cellular responses, including proliferation, survival, and differentiation. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is a lymphotropic herpesvirus frequently found in patients with neuroinflammatory diseases. Previous reports implicated the importance of CREs in the HHV-6A life cycle, although the effects of the binding of transcription factors to CREs in viral replication have not been fully elucidated. In this study, we analyzed the role of the CREB family of transcription factors during HHV-6A replication. We found that HHV-6A infection enhanced phosphorylation of the CREB family members CREB1 and activating transcription factor 1 (ATF1). Knockout (KO) of CREB1 or ATF1 enhanced viral gene expression and viral replication. The increase in viral yields in supernatants from ATF1-KO cells was greater than that in supernatants from CREB1-KO cells. Transcriptome sequencing (RNA-seq) analysis showed that sensors of the innate immune system were downregulated in ATF1-KO cells, and mRNAs of beta interferon (IFN-ß) and IFN-regulated genes were reduced in these cells infected with HHV-6A. IFN-ß treatment of ATF1-KO cells reduced progeny viral yields significantly, suggesting that the enhancement of viral replication was caused by a reduction of IFN-ß. Taken together, our results suggest that ATF1 is activated during HHV-6A infection and restricts viral replication via IFN-ß induction. IMPORTANCE Human herpesvirus 6A (HHV-6A) is a ubiquitous herpesvirus implicated in Alzheimer's disease, although its role in its pathogenesis has not been confirmed. Here, we showed that the transcription factor ATF1 restricts HHV-6A replication, mediated by IFN-ß induction. Our study provides new insights into the role of ATF1 in innate viral immunity and reveals the importance of IFN-ß for regulation of HHV-6A replication, which possibly impairs HHV-6A pathogenesis.


Assuntos
Fator 1 Ativador da Transcrição , Herpesvirus Humano 6 , Interferon beta , Replicação Viral , Fator 1 Ativador da Transcrição/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Técnicas de Inativação de Genes , Herpesvirus Humano 6/fisiologia , Humanos , Interferon beta/genética
5.
J Infect Dis ; 226(8): 1391-1395, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35512332

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant omicron is now under investigation. We evaluated cross-neutralizing activity against omicron in coronavirus disease 2019 (COVID-19) convalescent patients (n = 23) who had received 2 doses of an mRNA vaccination (BNT162b2 or mRNA-1273). Intriguingly, after the second vaccination, the neutralizing antibody titers of subjects against SARS-CoV-2 variants, including omicron, all became seropositive, and significant fold-increases (21.1-52.0) were seen regardless of the disease severity. Our findings thus demonstrate that 2 doses of mRNA vaccination to SARS-CoV-2 convalescent patients can induce cross-neutralizing activity against omicron.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , RNA Mensageiro , Vacinação
6.
J Virol ; 95(23): e0126921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549982

RESUMO

Viral infection induces host cells to mount a variety of immune responses, which may either limit viral propagation or create conditions conducive to virus replication in some instances. In this regard, activation of the NF-κB transcription factor is known to modulate virus replication. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is frequently found in patients with neuroinflammatory diseases, although its role in disease pathogenesis has not been elucidated. In this study, we found that the HHV-6A-encoded U14 protein activates NF-κB signaling following interaction with the NF-κB complex protein, p65. Through induction of nuclear translocation of p65, U14 increases the expression of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein 1 transcripts. We also demonstrated that activation of NF-κB signaling is important for HHV-6A replication, since inhibition of this pathway reduced virus protein accumulation and viral genome copy number. Taken together, our results suggest that HHV-6A infection activates the NF-κB pathway and promotes viral gene expression via late gene products, including U14. IMPORTANCE Human herpesvirus 6A (HHV-6A) is frequently found in patients with neuro-inflammation, although its role in the pathogenesis of this disease has not been elucidated. Most viral infections activate the NF-κB pathway, which causes the transactivation of various genes, including those encoding proinflammatory cytokines. Our results indicate that HHV-6A U14 activates the NF-κB pathway, leading to upregulation of proinflammatory cytokines. We also found that activation of the NF-κB transcription factor is important for efficient viral replication. This study provides new insight into HHV-6A U14 function in host cell signaling and identifies potential cellular targets involved in HHV-6A pathogenesis and replication.


Assuntos
Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , NF-kappa B/metabolismo , Infecções por Roseolovirus/imunologia , Transdução de Sinais/imunologia , Proteínas Virais/imunologia , Linhagem Celular , Regulação da Expressão Gênica , Genes Virais , Genoma Viral , Humanos , NF-kappa B/genética , Doenças Neuroinflamatórias , Receptor EphB2 , Proteínas Virais/genética , Replicação Viral
7.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298543

RESUMO

Human herpesvirus 6A (HHV-6A) and HHV-6B use different cellular receptors, human CD46 and CD134, respectively and have different cell tropisms although they have 90% similarity at the nucleotide level. An important feature that characterizes HHV-6A/6B is the glycoprotein H (gH)/gL/gQ1/gQ2 complex (a tetramer) that each virus has specifically on its envelope. Here, to determine which molecules in the tetramer contribute to the specificity for each receptor, we developed a cell-cell fusion assay system for HHV-6A and HHV-6B that uses the cells expressing CD46 or CD134. With this system, when we replaced the gQ1 or gQ2 of HHV-6A with that of HHV-6B in the tetramer, the cell fusion activity mediated by glycoproteins via CD46 was lower than that done with the original-type tetramer. When we replaced the gQ1 or the gQ2 of HHV-6A with that of HHV-6B in the tetramer, the cell fusion mediated by glycoproteins via CD134 was not seen. In addition, we generated two types of C-terminal truncation mutants of HHV-6A gQ2 (AgQ2) to examine the interaction domains of HHV-6A gQ1 (AgQ1) and AgQ2. We found that amino acid residues 163 to 185 in AgQ2 are important for interaction of AgQ1 and AgQ2. Finally, to investigate whether HHV-6B gQ2 (BgQ2) can complement AgQ2, an HHV-6A genome harboring BgQ2 was constructed. The mutant could not produce an infectious virus, indicating that BgQ2 cannot work for the propagation of HHV-6A. These results suggest that gQ2 supports the tetramer's function, and the combination of gQ1 and gQ2 is critical for virus propagation.IMPORTANCE Glycoprotein Q2 (gQ2), an essential gene for virus propagation, forms a heterodimer with gQ1. The gQ1/gQ2 complex has a critical role in receptor recognition in the gH/gL/gQ1/gQ2 complex (a tetramer). We investigated whether gQ2 regulates the specific interaction between the HHV-6A or -6B tetramer and CD46 or CD134. We established a cell-cell fusion assay system for HHV-6A/6B and switched the gQ1 or gQ2 of HHV-6A with that of HHV-6B in the tetramer. Although cell fusion was induced via CD46 when gQ1 or gQ2 was switched between HHV-6A and -6B, the activity was lower than that of the original combination. When gQ1 or gQ2 was switched in HHV-6A and -6B, no cell fusion was observed via CD134. HHV-6B gQ2 could not complement the function of HHV-6A's gQ2 in HHV-6A propagation, suggesting that the combination of gQ1 and gQ2 is critical to regulate the specificity of the tetramer's function for virus entry.

8.
PLoS Pathog ; 16(7): e1008648, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32678833

RESUMO

A unique glycoprotein is expressed on the virus envelope of human herpesvirus 6B (HHV-6B): the complex gH/gL/gQ1/gQ2 (hereafter referred to as the HHV-6B tetramer). This tetramer recognizes a host receptor expressed on activated T cells: human CD134 (hCD134). This interaction is essential for HHV-6B entry into the susceptible cells and is a determinant for HHV-6B cell tropism. The structural mechanisms underlying this unique interaction were unknown. Herein we solved the interactions between the HHV-6B tetramer and the receptor by using their neutralizing antibodies in molecular and structural analyses. A surface plasmon resonance analysis revealed fast dissociation/association between the tetramer and hCD134, although the affinity was high (KD = 18 nM) and comparable to those for the neutralizing antibodies (anti-gQ1: 17 nM, anti-gH: 2.7 nM). A competition assay demonstrated that the anti-gQ1 antibody competed with hCD134 in the HHV-6B tetramer binding whereas the anti-gH antibody did not, indicating the direct interaction of gQ1 and hCD134. A single-particle analysis by negative-staining electron microscopy revealed the tetramer's elongated shape with a gH/gL part and extra density corresponding to gQ1/gQ2. The anti-gQ1 antibody bound to the tip of the extra density, and anti-gH antibody bound to the putative gH/gL part. These results highlight the interaction of gQ1/gQ2 in the HHV-6B tetramer with hCD134, and they demonstrate common features among viral ligands of the betaherpesvirus subfamily from a macroscopic viewpoint.


Assuntos
Herpesvirus Humano 6/metabolismo , Receptores OX40/metabolismo , Infecções por Roseolovirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Humanos
9.
PLoS Pathog ; 16(7): e1008609, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702057

RESUMO

Primary infection of human herpesvirus 6B (HHV-6B) occurs in infants after the decline of maternal immunity and causes exanthema subitum accompanied by a high fever, and it occasionally develops into encephalitis resulting in neurological sequelae. There is no effective prophylaxis for HHV-6B, and its development is urgently needed. The glycoprotein complex gH/gL/gQ1/gQ2 (called 'tetramer of HHV-6B') on the virion surface is a viral ligand for its cellular receptor human CD134, and their interaction is thus essential for virus entry into the cells. Herein we examined the potency of the tetramer as a vaccine candidate against HHV-6B. We designed a soluble form of the tetramer by replacing the transmembrane domain of gH with a cleavable tag, and the tetramer was expressed by a mammalian cell expression system. The expressed recombinant tetramer is capable of binding to hCD134. The tetramer was purified to homogeneity and then administered to mice with aluminum hydrogel adjuvant and/or CpG oligodeoxynucleotide adjuvant. After several immunizations, humoral and cellular immunity for HHV-6B was induced in the mice. These results suggest that the tetramer together with an adjuvant could be a promising candidate HHV-6B vaccine.


Assuntos
Exantema Súbito/imunologia , Vacinas contra Herpesvirus/imunologia , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Exantema Súbito/virologia , Herpesvirus Humano 6 , Humanos , Camundongos , Camundongos Endogâmicos BALB C
10.
J Infect Dis ; 223(7): 1145-1149, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411935

RESUMO

Most patients with coronavirus disease 2019 (COVID-19) experience asymptomatic disease or mild symptoms, but some have critical symptoms requiring intensive care. It is important to determine how patients with asymptomatic or mild COVID-19 react to severe acute respiratory syndrome coronavirus 2 infection and suppress virus spread. Innate immunity is important for evasion from the first virus attack, and it may play an important role in the pathogenesis in these patients. We measured serum cytokine levels in 95 patients with COVID-19 during the infection's acute phase and report that significantly higher interleukin 12 and 2 levels were induced in patients with asymptomatic or mild disease than in those with moderate or severe disease, indicating the key roles of these cytokines in the pathogenesis of asymptomatic or mild COVID-19.


Assuntos
COVID-19/imunologia , Imunidade Inata , Interleucina-12/sangue , Interleucina-2/sangue , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Assintomáticas , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Estudos de Casos e Controles , Feminino , Voluntários Saudáveis , Humanos , Interleucina-12/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , RNA Viral/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Adulto Jovem
11.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852793

RESUMO

Human herpesvirus 6B (HHV-6B), a T-lymphotropic virus, infects almost exclusively humans. An animal model of HHV-6B has not been available. Here, we report the first animal model to mimic HHV-6B pathogenesis; the model is based on humanized mice in which human immune cells were engrafted and maintained. For HHV-6B replication, adequate human T-cell activation (which becomes susceptible to HHV-6B) is necessary in this murine model. Here, we found that an additional transfer of human mononuclear cells to humanized mice resulted in an explosive proliferation of human activated T cells, which could be representative of graft-versus-host disease (GVHD) because the primary transfer of human cells was not sufficient to increase the number and ratio of human T cells. Mice infected with HHV-6B became weak and/or died approximately 7 to 14 days later. Quantitative PCR analysis revealed that the spleen and lungs were the major sites of HHV-6B replication in this model, and this was corroborated by the detection of viral proteins in these organs. Histological analysis also revealed the presence of megakaryocytes, indicating HHV-6B infection. Multiplex analysis of cytokines/chemokines in sera from the infected mice showed secretions of human cytokines/chemokines as reported for both in vitro infection and clinical samples, indicating that the secreted cytokines could affect pathogenesis. This is the first animal model showing HHV-6B pathogenesis, and it will be useful for elucidating the pathogenicity of HHV-6B, which is related to GVHD and idiopathic pneumonia syndrome.IMPORTANCE Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that establishes lifelong latent infection only in humans, and the infection can reactivate, with severe complications that cause major problems. A small-animal model of HHV-6B infection has thus been desired for research regarding the pathogenicity of HHV-6B and the development of antiviral agents. We generated humanized mice by transplantation with human hematopoietic stem cells, and here, we modified the model by providing an additional transfer of human mononuclear cells, providing the proper conditions for efficient HHV-6B infection. This is the first humanized mouse model to mimic HHV-6B pathogenesis, and it has great potential for research into the in vivo pathogenesis of HHV-6B.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Herpesvirus Humano 6/imunologia , Pneumonia Viral/imunologia , Infecções por Roseolovirus/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/virologia , Humanos , Megacariócitos/imunologia , Megacariócitos/patologia , Megacariócitos/virologia , Camundongos , Camundongos Knockout , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Infecções por Roseolovirus/patologia , Síndrome , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia
12.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842329

RESUMO

Exanthem subitum is a common childhood illness caused by primary infection with human herpesvirus 6B (HHV-6B). It is occasionally complicated by febrile seizures and even encephalitis. HHV-6B reactivation also causes encephalitis, especially after allogeneic hematopoietic stem cell transplantation. However, no adequate antiviral treatment for HHV-6B has yet been established. Mouse-derived monoclonal antibodies (MAbs) against the HHV-6B envelope glycoprotein complex gH/gL/gQ1/gQ2 have been shown to neutralize the viral infection. These antibodies have the potential to become antiviral agents against HHV-6B despite their inherent immunogenicity to the human immune system. Humanization of MAbs derived from other species is one of the proven solutions to such a dilemma. In this study, we constructed chimeric forms of two neutralizing MAbs against HHV-6B to make humanized antibodies. Both showed neutralizing activities equivalent to those of their original forms. This is the first report of humanized antibodies against HHV-6B and provides a basis for the further development of HHV-6B-specific antivirals.IMPORTANCE Human herpesvirus 6B (HHV-6B) establishes lifelong latent infection in most individuals after the primary infection. Encephalitis is the most severe complication caused by both the primary infection and the reactivation of HHV-6B and is the cause of considerable mortality in patients, without any established treatments to date. The humanization of the murine neutralizing antibodies described in this research provided a feasible way to reduce the inherent immunogenicity of the antibodies without changing their neutralizing activities. These newly designed chimeric antibodies against HHV-6B have the potential to be candidates for antivirals for future use.


Assuntos
Anticorpos Neutralizantes/imunologia , Herpesvirus Humano 6/imunologia , Animais , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Antivirais , Linhagem Celular , Engenharia Genética/métodos , Células HEK293 , Herpesvirus Humano 6/genética , Humanos , Camundongos , Proteínas do Envelope Viral/imunologia
13.
Microbiol Immunol ; 64(10): 703-711, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827324

RESUMO

Human herpesvirus 6A (HHV-6A) is a member of the genus Roseolovirus and the subfamily Betaherpesvirinae. It is similar to and human cytomegalovirus (HCMV). HHV-6A encodes a 41 kDa nuclear phosphoprotein, U27, which acts as a processivity factor in the replication of the viral DNA. HHV-6A U27 has 43% amino acid sequence homology with HCMV UL44, which is important for DNA replication. A previous study on HHV-6A U27 revealed that it greatly increases the in vitro DNA synthesis activity of HHV-6A DNA polymerase. However, the role of U27 during the HHV-6A virus replication process remains unclear. In this study, we constructed a U27-deficient HHV-6A mutant (HHV-6ABACU27mut) with a frameshift insertion at the U27 gene using an HHV-6A bacterial artificial chromosome (BAC) system. Viral reconstitution from the mutant BAC DNA was not detected, in contrast to the wild type and the revertant from the U27 mutant. This suggests that U27 plays a critical role in the life cycle of HHV-6A.


Assuntos
Herpesvirus Humano 6/genética , Proteínas Virais/genética , Replicação Viral/genética , Linhagem Celular , Replicação do DNA/genética , DNA Viral/genética , Exantema Súbito/virologia , Febre/virologia , Mutação da Fase de Leitura/genética , Genoma Viral/genética , Células HEK293 , Humanos
14.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212944

RESUMO

Human herpesvirus 6A (HHV-6A) glycoprotein B (gB) is a glycoprotein consisting of 830 amino acids and is essential for the growth of the virus. Previously, we reported that a neutralizing monoclonal antibody (MAb) called 87-y-13 specifically reacts with HHV-6A gB, and we identified its epitope residue at asparagine (Asn) 347 on gB. In this study, we examined whether the epitope recognized by the neutralizing MAb is essential for HHV-6A infection. We constructed HHV-6A bacterial artificial chromosome (BAC) genomes harboring substitutions at Asn347, namely, HHV-6A BACgB(N347K) and HHV-6A BACgB(N347A). These mutant viruses could be reconstituted and propagated in the same manner as the wild type and their revertants, and MAb 87-y-13 could not inhibit infection by either mutant. In a cell-cell fusion assay, Asn at position 347 on gB was found to be nonessential for cell-cell fusion. In addition, in building an HHV-6A gB homology model, we found that the epitope of the neutralizing MAb is located on domain II of gB and is accessible to solvents. These results indicate that Asn at position 347, the linear epitope of the neutralizing MAb, does not affect HHV-6A infectivity.IMPORTANCE Glycoprotein B (gB) is one of the most conserved glycoproteins among all herpesviruses and is a key factor for virus entry. Therefore, antibodies targeted to gB may neutralize virus entry. Human herpesvirus 6A (HHV-6A) encodes gB, which is translated to a protein of about 830 amino acids (aa). Using a monoclonal antibody (MAb) for HHV-6A gB, which has a neutralizing linear epitope, we analyzed the role of its epitope residue, N347, in HHV-6A infectivity. Interestingly, this gB linear epitope residue, N347, was not essential for HHV-6A growth. By constructing a homology model of HHV-6A gB, we found that N347 was located in the region corresponding to domain II. Therefore, with regard to its neutralizing activity against HHV-6A infection, the epitope on gB might be exposed to solvents, suggesting that it might be a target of the immune system.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Herpesvirus Humano 6/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Fusão Celular , Linhagem Celular , Glicoproteínas/imunologia , Células HEK293 , Herpesviridae/química , Herpesviridae/imunologia , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/crescimento & desenvolvimento , Herpesvirus Humano 6/patogenicidade , Humanos , Proteína Cofatora de Membrana/metabolismo , Mutação , Testes de Neutralização , Domínios Proteicos/imunologia , Proteínas Recombinantes , Análise de Sequência de Proteína , Linfócitos T , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
15.
Ann Hum Biol ; 46(4): 340-346, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31446783

RESUMO

Background: Increasing dietary fibre (DF) intake through a habitual diet is recommended for preventing diabetes. Aim: To investigate a stepwise approach to nutrition education on DF intake among young adults in Japan with the largest deficit in habitual DF intake from the recommended value. Subjects and methods: Plasma glucose levels were measured in 54 adults in their 20s and 30s (29 men, 25 women) during fasting and at 30, 60, 90, and 120 minutes. Habitual DF intake and postprandial plasma glucose level were analysed. Results: DF intake was low (men = 5.7 ± 1.5 g/1000 kcal; women = 6.3 ± 1.2 g/1000 kcal) with no sex difference. Comparison between low- and high-DF groups based on the cut-off point (7.0 g/1000 kcal) showed that the pattern of changes in postprandial plasma glucose levels was significant, and a significant increase was observed at 30 minutes in the low-DF group. Comparison by food group demonstrated that habitual intake of potatoes, green/yellow vegetables, other vegetables, seaweed, peas and beans, and fruits was significantly higher in the high-DF group. Conclusion: This study provides valuable information regarding food selection for preventing diabetes and suggests that 7.0 g/1000 kcal of DF is an effective target value for a stepwise approach to nutrition education in Japan.


Assuntos
Glicemia/análise , Dieta/estatística & dados numéricos , Fibras na Dieta/estatística & dados numéricos , Período Pós-Prandial , Adulto , Feminino , Humanos , Japão , Masculino , Período Pós-Prandial/fisiologia , Adulto Jovem
16.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794035

RESUMO

Immediate early proteins of human herpesvirus 6A (HHV-6A) are expressed at the outset of lytic infection and thereby regulate viral gene expression. Immediate early protein 2 (IE2) of HHV-6A is a transactivator that drives a variety of promoters. The C-terminal region of HHV-6A IE2 is shared among IE2 homologs in betaherpesviruses and is involved in dimerization, DNA binding, and transcription factor binding. In this study, the structure of the IE2 C-terminal domain (IE2-CTD) was determined by X-ray crystallography at a resolution of 2.5 Å. IE2-CTD forms a homodimer stabilized by a ß-barrel core with two interchanging long loops. Unexpectedly, the core structure resembles those of the gammaherpesvirus factors EBNA1 of Epstein-Barr virus and LANA of Kaposi sarcoma-associated herpesvirus, but the interchanging loops are longer in IE2-CTD and form helix-turn-helix (HTH)-like motifs at their tips. The HTH and surrounding α-helices form a structural feature specific to the IE2 group. The apparent DNA-binding site (based on structural similarity with EBNA1 and LANA) resides on the opposite side of the HTH-like motifs, surrounded by positive electrostatic potential. Mapping analysis of conserved residues on the three-dimensional structure delineated a potential factor-binding site adjacent to the expected DNA-binding site. The predicted bi- or tripartite functional sites indicate a role for IE2-CTD as an adapter connecting the promoter and transcriptional factors that drive gene expression.IMPORTANCE Human herpesvirus 6A (HHV-6A) and HHV-6B belong to betaherpesvirus subfamily. Both viruses establish lifelong latency after primary infection, and their reactivation poses a significant risk to immunocompromised patients. Immediate early protein 2 (IE2) of HHV-6A and HHV-6B is a transactivator that triggers viral replication and contains a DNA-binding domain shared with other betaherpesviruses such as human herpesvirus 7 and human cytomegalovirus. In this study, an atomic structure of the DNA-binding domain of HHV-6A IE2 was determined and analyzed, enabling a structure-based understanding of the functions of IE2, specifically DNA recognition and interaction with transcription factors. Unexpectedly, the dimeric core resembles the DNA-binding domain of transcription regulators from gammaherpesviruses, showing structural conservation as a DNA-binding domain but with its own unique structural features. These findings facilitate further characterization of this key viral transactivator.


Assuntos
DNA/metabolismo , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Proteínas Imediatamente Precoces/genética , Conformação Proteica , Homologia de Sequência , Ativação Transcricional , Proteínas Virais/genética
17.
PLoS Pathog ; 12(5): e1005594, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27152739

RESUMO

The tegument protein U14 of human herpesvirus 6B (HHV-6B) constitutes the viral virion structure and is essential for viral growth. To define the characteristics and functions of U14, we determined the crystal structure of the N-terminal domain of HHV-6B U14 (U14-NTD) at 1.85 Å resolution. U14-NTD forms an elongated helix-rich fold with a protruding ß hairpin. U14-NTD exists as a dimer exhibiting broad electrostatic interactions and a network of hydrogen bonds. This is first report of the crystal structure and dimerization of HHV-6B U14. The surface of the U14-NTD dimer reveals multiple clusters of negatively- and positively-charged residues that coincide with potential functional sites of U14. Three successive residues, L424, E425 and V426, which relate to viral growth, reside on the ß hairpin close to the dimer's two-fold axis. The hydrophobic side-chains of L424 and V426 that constitute a part of a hydrophobic patch are solvent-exposed, indicating the possibility that the ß hairpin region is a key functional site of HHV-6 U14. Structure-based sequence comparison suggests that U14-NTD corresponds to the core fold conserved among U14 homologs, human herpesvirus 7 U14, and human cytomegalovirus UL25 and UL35, although dimerization appears to be a specific feature of the U14 group.


Assuntos
Herpesvirus Humano 6/química , Proteínas Estruturais Virais/química , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Reação em Cadeia da Polimerase , Conformação Proteica
18.
Adv Exp Med Biol ; 1045: 227-249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896670

RESUMO

Betaherpesvirus possesses a large genome DNA with a lot of open reading frames, indicating abundance in the variety of viral protein factors. Because the complicated pathogenicity of herpesvirus reflects the combined functions of these factors, analyses of individual proteins are the fundamental steps to comprehensively understand about the viral life cycle and the pathogenicity. In this chapter, structural aspects of the betaherpesvirus-encoded proteins are introduced. Betaherpesvirus-encoded proteins of which structural information is available were summarized and subcategorized into capsid proteins, tegument proteins, nuclear egress complex proteins, envelope glycoproteins, enzymes, and immune-modulating factors. Structure of capsid proteins are analyzed in capsid by electron cryomicroscopy at quasi-atomic resolution. Structural information of teguments is limited, but a recent crystallographic analysis of an essential tegument protein of human herpesvirus 6B is introduced. As for the envelope glycoproteins, crystallographic analysis of glycoprotein gB has been done, revealing the fine-tuned structure and the distribution of its antigenic domains. gH/gL structure of betaherpesvirus is not available yet, but the overall shape and the spatial arrangement of the accessory proteins are analyzed by electron microscopy. Nuclear egress complex was analyzed from the structural perspective in 2015, with the structural analysis of cytomegalovirus UL50/UL53. The category "enzymes" includes the viral protease, DNA polymerase and terminase for which crystallographic analyses have been done. The immune-modulating factors are viral ligands or receptors for immune regulating factors of host immune cells, and their communications with host immune molecules are demonstrated in the aspect of molecular structure.


Assuntos
Betaherpesvirinae/metabolismo , Infecções por Herpesviridae/virologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Animais , Betaherpesvirinae/química , Betaherpesvirinae/genética , Núcleo Celular/virologia , Humanos , Proteínas Estruturais Virais/genética , Liberação de Vírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa