RESUMO
Co-doping strategy is done if the emission from the activator is relatively low with existing excitation energy. Thus, to enrich the emission from an activator, the sensitizer like Bi3+ is co-doped onto the host and this intermediator transfers its emission energy to the activator. Prior to the study, no investigations had been conducted, marking the foundational exploration of the sensitizer effect within the rare earth-doped SrCeO3 matrix aimed at enhancing luminescence properties. The current study focuses on the innovation of single-phase robust white phosphors, SrCeO3: 2wt% Sm3+: xBi3+ (x = 0 wt%, 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%) to coat near UV LED chips for high CRI wLED applications. The novel perovskites were synthesized using a low-temperature fuel excess gel combustion method, utilizing citric acid as the fuel and ammonium nitrate as an extra oxidizer. Upon co-doping SrCeO3: 2wt% Sm3+ with bismuth, the impact of changing sensitizer concentration on both the development of crystalline phases, morphology, elemental composition, band gap energy, and the luminescent properties of ceramic powders were explored through X-ray diffraction, FE-SEM, Energy dispersive spectra, UV-visible absorption spectra, and photoluminescence characterization methods. The experimental results revealed the orthorhombic single-phase formation of SrCeO3: 2wt% Sm3+: xBi3+perovskites yielding high crystallinity and luminescence maximum at critical sensitizer concentration 1 wt% Bi3+. Also, the bright white light emission of all the perovskites was confirmed using the CIE color diagram. Thus, nano-perovskite SrCe0.97Sm0.02O3: 1wt% Bi3+ acts as an inevitable direct phosphor coating the near UV chip in LEDs, which can be a great revolution in energy savings applications.
RESUMO
The current research illustrates excitation energy-triggered photoluminescent characteristics of Pr3+ions in SrCeO3 providing a practical approach for developing high CRI wLED and its applications. SrCeO3: xPr3+ (x = 0, 0.005, 0.01, 0.02, 0.03 wt) perovskites synthesized by fuel excess gel combustion method generate high CRI (~98) for wLED applications. Crystalline phosphors with orthorhombic structures having space group Pnma were confirmed by XRD. The unit cell volume expansion occurred with an increase in Pr3+ concentration was verified through the Rietveld refinement technique. Surface morphology, particle distribution, and size were observed via FE-SEM imaging, and detected a well-defined regular distorted spherical structure with average grain size 0.826 µm for Pr3+ doped SrCeO3. Elemental mapping and EDS analysis identified the uniform distribution and elemental purity of SrCeO3: 0.01 Pr3+. Further, the molecular vibrations and modes were analyzed from the Raman spectrum. Moreover, the average particle size assessed via TEM analysis was found to be ~83.2 nm, consistent with XRD analysis. UV-visible absorption spectra for optical energy-band gap analysis showed a decrease in band gap energy with an increase in Pr3+ concentration, realizing an effective energy transfer from Ce4+ to Pr3+. PL measurements showed a huge variety of emission transitions, corresponding to excitations 290 nm, 321 nm, 373 nm, and 449 nm. The critical dopant concentration instigated by concentration quenching was 1 wt% Pr3+, ascribed to dipole-dipole interaction. The fluorescence lifetime of the optimal sample was 4.835 µs. Commission International de I'Eclairage (CIE) diagram exposes the white light emanation of SrCeO3: Pr3+. Among which white light with high CRI (~98) and comparably low CCT (~6311 K) was obtained for SrCeO3: 0.01 Pr3+ at 373 nm excitation. The obtained results recommend that SrCeO3: Pr3+ perovskite as an efficient white phosphor for fabricating high-performance wLEDs.
RESUMO
CdS quantum dots of different sizes approximately 3-5nm were prepared using aqueous solutions of CdSO(4) and Na(2)S(2)O(3) at 303K with thioglycerol as stabilizing agent and catalyst. The broad X-ray diffraction pattern and SAED pattern with bright circular spots and clear lattice fringes in the high-resolution TEM image indicate cubic phase of the nanocrystals. Band gap changes from the bulk value of 2.4 to 3.16eV in the nanoparticles indicating quantum size effect. The photoluminescence (PL) spectrum is blue-shifted to 528nm. The PL emission band is blue/red-shifted on doping with Zn(2+)/Cu(2+). In the case of Cu(2+), the PL intensity is found to be maximum at 10wt% doping and almost completely quenched at 15wt% doping. On doping with Zn(2+), the intensity and blue-shift of PL are found to be maximum at 2 and 6wt% doping, respectively.
Assuntos
Compostos de Cádmio/química , Cobre/química , Pontos Quânticos , Sulfetos/química , Água/química , Zinco/química , Microscopia Eletrônica de Transmissão , Propriedades de Superfície , Difração de Raios XRESUMO
Silver nanoparticles of different sizes were prepared by citrate reduction and characterized by UV-vis absorbance spectra, TEM images and photoluminescence spectra. The morphology of the colloids obtained consists of a mixture of nanorods and spheres. The surface plasmon resonance (SPR) and photoemission properties of Ag nanoparticles are found to be sensitive to citrate concentration. A blue shift in SPR and an enhancement in photoluminescence intensity are observed with increase in citrate concentration. Effect of addition of KCl and variation of pH in photoluminescence was also studied.
Assuntos
Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Fotoquímica/métodos , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Ácido Cítrico/química , Coloides/química , Concentração de Íons de Hidrogênio , Luminescência , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Nanopartículas/química , Nanotecnologia/métodos , Cloreto de Potássio/química , Reprodutibilidade dos TestesRESUMO
The formation mechanism and morphology of Au-Ag bimetallic colloidal nanoparticles depend on the composition. Ag coated Au colloidal nanoparticles have been prepared by deposition of Ag through chemical reduction on performed Au colloid. The composition of the Au100-x-Agx particles was varied from x=0 to 50. The obtained colloids were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The Au80-Ag20 colloid consists of alloy nanorods with dimension of 25nm x 100nm. The activity of these nanorods in surface enhanced Raman spectroscopy (SERS) was checked by using sodium salicylate as an adsorbate probe. Intense SERS bands are observed indicating its usefulness as a SERS substrate in near infrared (NIR) laser excitation.