RESUMO
The current study investigates the effect of ethanolic extract of Salvinia cucullata (EESC) on growth, non-specific immune parameters, and disease resistance to Vibrio parahaemolyticus in Litopenaeus vannamei. The in-vitro cytotoxicity investigation was performed on shrimp hemolymph hemocytes to assess the toxicity and immunological responses with various concentrations of EESC, and no significant difference in cell viability was seen across dosages, but substantial changes in Phenol Oxidase (PO) and phagocytosis were reported. The in-vivo investigation was conducted on white shrimp for 56 days using varied amounts of 0 (control), 5 (EESC5), 10 (EESC10), and 20 (EESC20) g kg-1 containing feeds and challenged against Vibrio parahaemolyticus. The shrimp fed the EESC10 diet gained the most weight, had the highest specific growth rate (SGR) and had a better feed conversion ratio (FCR). The highest cumulative survival percentage was noted on the EESC10 diet-fed shrimps followed by EESC20 and EESC5 groups after the bacterial challenge with V. parahaemolyticus. The results of immune parameters such as total protein, total carbohydrate, coagulation time, total hemocytes count (THC), superoxide dismutase (SOD), ProPO, and phagocytosis levels were better in the EESC10 group. EESC5 and EESC20 groups were also shown better immunomodulatory effects than the control group. In conclusion, the oral administration of EESC was found to be an effective functional feed additive to improve the growth, immune parameters, and disease resistance against V. parahaemolyticus in L.vannamei.
Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Resistência à Doença , Vibrio parahaemolyticus/fisiologia , Imunidade Inata , Dieta/veterinária , Monofenol Mono-Oxigenase/metabolismo , Suplementos NutricionaisRESUMO
Bisphenol-A (BPA) is a monomer found in polycarbonate plastics, food cans, and other everyday chemicals; this monomer and its counterparts are widely used, culminating in its presence in water, soil, sediment, and the atmosphere. Furthermore, because of its estrogenic and genotoxic properties, it has been acknowledged as an endocrine disruptor; contamination of BPA in the environment is becoming a growing concern, and ways to effectively mitigate BPA from the environment are currently explored. Hence, the focal point of the review is to collate the bacterial degradation of BPA with the proposed degradation mechanism, explicitly focusing on researches published between 2017 and 2022. BPA breakdown is dependent primarily on bacterial metabolism, although numerous factors influence its fate in the environment. The metabolic routes for BPA breakdown in crucial bacterial strains were postulated, sourced on the transformed metabolite-intermediates perceived through degradation; enzymes and genes associated with the bacterial degradation of BPA have also been included in this review. This review will be momentous to generate a conceptual strategy and stimulate the progress on bacterial mitigation of BPA as a path to a sustainable cleaner environment.
Assuntos
Disruptores Endócrinos , Bactérias/metabolismo , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/análise , Monitoramento Ambiental , Fenóis , Plásticos , Solo , ÁguaRESUMO
Rauvolfia tetraphylla is an essential medicinal plant that has been widely used in traditional medicine for various disease treatments. However, the tumor suppressor activity of R. tetraphylla and its phytocompounds were not explored against triple-negative breast cancer. The current research investigated the impact of R. tetraphylla methanolic extract (RTE) and its isolated compounds Ajmaline (RTC1) and Reserpine (RTC2) on triple-negative breast cancer cell line (MDA-MB-231) focusing on anti-proliferative effects. Our study imparts that RTE and RTC2 showed promising cytotoxic effects compared to RTC1. So further experiments have proceeded with RTE and RTC2, to evaluate its proliferation, migration, and apoptotic effect. The result shows around 80% of cells were observed in the G0/G1 phase in cell cycle analysis indicating the cell cycle inhibition and duel staining clearly showed the apoptotic effect. The migration of cells after the scratch was 60.45% observed in control and 90% in treated cells showing the inhibition of migration. ROS distribution was intense compared to control indicating the increased ROS stress in treated cells. Both RTE and RTC2-treated cells showed the potential to suppress proliferation and induce apoptotic change by upregulating BAX and MST-1 and suppressing Bcl2, LATS-1, and YAP, proving that deregulation of YAP resulting in the blockage of TEAD-YAP complex and inhibit proliferation. Therefore, R. tetraphylla extract and its isolated compounds were demonstrated to find its ability to act against MDA-MB-231 and these findings will help adjudicate it as a therapeutic drug against experimental triple-negative breast cancer.
Assuntos
Neoplasias da Mama , Rauwolfia , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Rauwolfia/metabolismo , Via de Sinalização Hippo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proliferação de CélulasRESUMO
Jasminum sambac L. (J. sambac) belongs to the family Oleaceae and it is an ornamental subtropical evergreen shrub used in traditional treatments of certain ailments and diseases. This study aimed at devising an integrated strategy attempts to evaluate the bioactive components in the J. sambac essential oil (JEO) against human breast cancer. JEO extracted by distillation process and analyzed by GC-MS was subjected to screening of therapeutic components in their allegiance to the drug-likeness index. The utility and efficacy of its molecular mechanism relating to anticancer potential were probed with network pharmacology analysis. Gene ontology, pathway enrichment, and compound-target-pathway network by Cytoscape helped to harp on hub targets and pathways involved in curative action. Drawing from the network data, molecular docking analysis of selected compounds on breast cancer targets was approached. The anti-proliferative study was carried out in MCF-7 and MDA-MB-231 to evaluate the cytotoxicity of JEO. Finally, in vivo anticancer activity was verified using rat models. The results showed MDA-MB-231 cell growth was highly inhibited than the MCF-7 cell line. Alongside this in vitro trial, in situ effectiveness of JEO was evaluated using female Sprague-Dawley rat animal models. In vivo experiments and histopathological analysis showed convincing results in DMBA tumor-induced rats. The larger aim of this study is to identify the potential ingredients of the JEO in cancer apoptosis by integrating network pharmacology and experimental validation achieved to certain extent confers credence to the concept of hiring J. sambac as floral therapy in dealing with the disastrous disease.
Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Jasminum , Óleos Voláteis , Humanos , Ratos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Óleos Voláteis/farmacologia , Simulação de Acoplamento Molecular , Jasminum/genética , Jasminum/metabolismo , Farmacologia em Rede , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/metabolismoRESUMO
The present study investigated the effect of polysaccharide gel (PG) extracted from the rind of durian fruit which is encapsulated with Bacillus subtilis as a feed and co-inoculation with Artemia nauplii in the induction of immune response in Danio rerio after Vibrio immersion challenge (5 days). The total RBC count, lysozyme activity test, weight, and length analysis revealed that the zebra fishes fed with the PG encapsulated probiotics had more immune induction activity, survival, and growth than the non-encapsulated groups. When the expression of the immune-related genes was measured, the studies revealed the significant upregulation (P < 0 .05) of interleukin 1 beta (Il1b), lysozyme (lyz), tumor necrosis factor-alpha (TNF-α), superoxide dismutase (SOD) genes in fish fed with PG encapsulated probiotics with A. nauplii showed an immense effect on the induction of immune response compared to other feeds.