Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2211711120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408214

RESUMO

Today, relatively warm Circumpolar Deep Water is melting Thwaites Glacier at the base of its ice shelf and at the grounding zone, contributing to significant ice retreat. Accelerating ice loss has been observed since the 1970s; however, it is unclear when this phase of significant melting initiated. We analyzed the marine sedimentary record to reconstruct Thwaites Glacier's history from the early Holocene to present. Marine geophysical surveys were carried out along the floating ice-shelf margin to identify core locations from various geomorphic settings. We use sedimentological data and physical properties to define sedimentary facies at seven core sites. Glaciomarine sediment deposits reveal that the grounded ice in the Amundsen Sea Embayment had already retreated to within ~45 km of the modern grounding zone prior to ca. 9,400 y ago. Sediments deposited within the past 100+ y record abrupt changes in environmental conditions. On seafloor highs, these shifts document ice-shelf thinning initiating at least as early as the 1940s. Sediments recovered from deep basins reflect a transition from ice proximal to slightly more distal conditions, suggesting ongoing grounding-zone retreat since the 1950s. The timing of ice-shelf unpinning from the seafloor for Thwaites Glacier coincides with similar records from neighboring Pine Island Glacier. Our work provides robust new evidence that glacier retreat in the Amundsen Sea was initiated in the mid-twentieth century, likely associated with climate variability.

2.
J Eukaryot Microbiol ; 70(1): e12933, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762918

RESUMO

The genus Hartaetosiga Carr, Richter and Nitsche, 2017 comprised up to now only three species, H. gracilis (Kent) Carr, Richter, Nitsche, 2017, H. balthica (Wylezich and Karpov) Carr, Richter and Nitsche, 2017 and H. minima (Wylezich and Karpov) Carr, Richter and Nitsche, 2017. Based on distinct molecular data these species were relocated from the strictly freshwater genus Codosiga (Ehrenberg) Bütschli, 1878 to a new genus comprising brackish and marine species. During the cruise MSM82/2 across the Atlantic Ocean in 2019, surface water samples were taken from 15 stations along a transect ranging from 35°S to 23°N. We were able to isolate and cultivate 14 strains of the genus Hartaetosiga. Morphometric data showed no distinct morphological traits allowing for a species delineation, indicating a cryptic species complex within the genus. Based on cultivation, morphological data, and molecular analyses, we recorded H. gracilis for the first time from off-shelf waters of the Atlantic Ocean and could describe a new species, H. australis n. sp. This new species was recorded from sampling stations in the Southern Hemisphere only, which may indicate a potential biogeographic restriction likely caused by the Equatorial Counter Current (ECC), dividing the northern and southern surface waters.


Assuntos
Transcriptoma , Oceano Atlântico
3.
J Eukaryot Microbiol ; 70(1): e12930, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35712988

RESUMO

Percolomonads (Heterolobosea) are aquatic heterotrophic flagellates frequently found in saline waters up to hypersaline environments. We isolated and cultivated seven strains of percolomonad flagellates from marine waters and sediments as well as from a hypersaline inland lake in the Atacama Desert. Morphological characterizations, comprising light and scanning electron microscopy, revealed only slight differences between the strains mainly limited to the cell shape, length of flagella, and length of the ventral feeding groove. Phylogenetic analyses of the 18S and 28S rDNA genes showed the formation of three fully supported clades within the Percolomonadida: the Percolomonadidae, the Barbeliidae fam. nov. and the Lulaidae fam. nov. We describe two new families (Barbeliidae fam. nov., Lulaidae fam. nov.), a new genus (Nonamonas gen. nov.), and five new species (Percolomonas adaptabilis sp. nov., Lula levis sp. nov., Barbelia pacifica sp. nov., Nonamonas montiensis gen. et sp. nov., Nonamonas santamariensis gen. et sp. nov.). Salinity experiments showed that P. adaptabilis sp. nov. from the Atlantic was better adapted to high salinities than all other investigated strains. Moreover, comparisons of our cultivation-based approach with environmental sequencing studies showed that P. adaptabilis sp. nov. seems to be globally distributed in marine surface waters while other species seem to be more locally restricted.


Assuntos
Filogenia , Humanos , DNA Ribossômico/genética , Análise de Sequência de DNA , RNA Ribossômico 16S/genética
4.
Biochem J ; 478(1): 63-78, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33313751

RESUMO

Multidrug resistant (MDR) bacteria have adapted to most clinical antibiotics and are a growing threat to human health. One promising type of candidates for the everlasting demand of new antibiotic compounds constitute antimicrobial peptides (AMPs). These peptides act against different types of microbes by permeabilizing pathogen cell membranes, whereas being harmless to mammalian cells. Contrarily, another class of membrane-active peptides, namely cell-penetrating peptides (CPPs), is known to translocate in eukaryotic cells without substantially affecting the cell membrane. Since CPPs and AMPs share several physicochemical characteristics, we hypothesized if we can rationally direct the activity of a CPP towards antimicrobial activity. Herein, we describe the screening of a synthetic library, based on the CPP sC18, including structure-based design to identify the active residues within a CPP sequence and to discover novel AMPs with high activity. Peptides with increased hydrophobicity were tested against various bacterial strains, and hits were further optimized leading to four generations of peptides, with the last also comprising fluorinated amino acid building blocks. Interestingly, beside strong antibacterial activities, we also detected activity in cancer cells, while non-cancerous cells remained unharmed. The results highlight our new candidates, particularly those from generation 4, as a valuable and promising source for the development of future therapeutics with antibacterial activity and beyond.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/farmacologia , Dicroísmo Circular , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/ultraestrutura , Halogenação , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/ultraestrutura
5.
Mol Phylogenet Evol ; 107: 166-178, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27765632

RESUMO

Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates.


Assuntos
Coanoflagelados/genética , Genes de Protozoários , Filogenia , Animais , Coanoflagelados/classificação , DNA Ribossômico/genética , Evolução Molecular , Água Doce , Funções Verossimilhança , Água do Mar , Especificidade da Espécie
6.
J Eukaryot Microbiol ; 64(3): 322-335, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27613221

RESUMO

The genus Tetrahymena (Ciliophora, Oligohymenophorea) probably represents the best studied ciliate genus. At present, more than forty species have been described. All are colorless, i.e. they do not harbor symbiotic algae, and as aerobes they need at least microaerobic habitats. Here, we present the morphological and molecular description of the first green representative, Tetrahymena utriculariae n. sp., living in symbiosis with endosymbiotic algae identified as Micractinium sp. (Chlorophyta). The full life cycle of the ciliate species is documented, including trophonts and theronts, conjugating cells, resting cysts and dividers. This species has been discovered in an exotic habitat, namely in traps of the carnivorous aquatic plant Utricularia reflexa (originating from Okavango Delta, Botswana). Green ciliates live as commensals of the plant in this anoxic habitat. Ciliates are bacterivorous, however, symbiosis with algae is needed to satisfy cell metabolism but also to gain oxygen from symbionts. When ciliates are cultivated outside their natural habitat under aerobic conditions and fed with saturating bacterial food, they gradually become aposymbiotic. Based on phylogenetic analyses of 18S rRNA and mitochondrial cox1 genes T. utriculariae forms a sister group to Tetrahymena thermophila.


Assuntos
Clorófitas/parasitologia , Cilióforos/classificação , Oligoimenóforos/classificação , Filogenia , Plantas/parasitologia , Simbiose/fisiologia , Tetrahymena/classificação , Animais , Sequência de Bases , Cilióforos/metabolismo , Cilióforos/fisiologia , DNA de Protozoário , Ecologia , Ecossistema , Estágios do Ciclo de Vida , Mitocôndrias/genética , Oxigênio/metabolismo , RNA Ribossômico 18S/genética , Tetrahymena/citologia , Tetrahymena/isolamento & purificação , Tetrahymena/metabolismo , Tetrahymena thermophila/classificação , Tetrahymena thermophila/genética , Traqueófitas/parasitologia
7.
Eur J Protistol ; 95: 126108, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39111267

RESUMO

Protists can endure challenging environments sustaining key ecosystem processes of the microbial food webs even under aridic or hypersaline conditions. We studied the diversity of protists at different latitudes of the Atacama Desert by massive sequencing of the hypervariable region V9 of the 18S rRNA gene from soils and microbial mats collected in the Andes. The main protist groups in soils detected in active stage through cDNA were cercozoans, ciliates, and kinetoplastids, while the diversity of protists was higher including diatoms and amoebae in the microbial mat detected solely through DNA. Co-occurrence networks from soils indicated similar assemblages dominated by amplicon sequence variants (ASVs) identified as Rhogostoma, Euplotes, and Neobodo. Microbial mat networks, on the other hand, were structured by ASVs classified as raphid-pennate diatoms and amoebae from the genera Hartmannella and Vannella, mostly negatively correlated to flagellates and microalgae. Additionally, our phylogenetic inferences of ASVs classified as Euplotes, Neobodo, and Rhogostoma were supported by sequence data of strains isolated during this study. Our results represent the first snapshot of the diversity patterns of culturable and unculturable protists and putative keystone taxa detected at remote habitats from the Atacama Desert.

8.
Front Microbiol ; 15: 1356977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572231

RESUMO

Introduction: Heterotrophic protists colonizing microbial mats have received little attention over the last few years, despite their importance in microbial food webs. A significant challenge originates from the fact that many protists remain uncultivable and their functions remain poorly understood. Methods: Metabarcoding studies of protists in microbial mats across high-altitude lagoons of different salinities (4.3-34 practical salinity units) were carried out to provide insights into their vertical stratification at the millimeter scale. DNA and cDNA were analyzed for selected stations. Results: Sequence variants classified as the amoeboid rhizarian Rhogostoma and the ciliate Euplotes were found to be common members of the heterotrophic protist communities. They were accompanied by diatoms and kinetoplastids. Correlation analyses point to the salinity of the water column as a main driver influencing the structure of the protist communities at the five studied microbial mats. The active part of the protist communities was detected to be higher at lower salinities (<20 practical salinity units). Discussion: We found a restricted overlap of the protist community between the different microbial mats indicating the uniqueness of these different aquatic habitats. On the other hand, the dominating genotypes present in metabarcoding were similar and could be isolated and sequenced in comparative studies (Rhogostoma, Euplotes, Neobodo). Our results provide a snapshot of the unculturable protist diversity thriving the benthic zone of five athalossohaline lagoons across the Andean plateau.

9.
J Eukaryot Microbiol ; 60(3): 235-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23346896

RESUMO

The identification of species within the genus Tetrahymena is known to be difficult due to their essentially identical morphology, the occurrence of cryptic and sibling species and the phenotypic plasticity associated with the polymorphic life cycle of some species. We have combined morphology and molecular biology to describe Tetrahymena aquasubterranea n. sp. from groundwater of Cape Town, Republic of South Africa. The phylogenetic analysis compares the cox1 gene sequence of T. aquasubterranea with the cox1 gene sequences of other Tetrahymena species and uses the interior-branch test to improve the resolution of the evolutionary relationships. This showed a considerable genetic divergence of T. aquasubterranea to its next relative, T. farlyi, of 9.2% (the average cox1 divergence among bona fide species of Tetrahymena is ~ 10%). Moreover, the analysis also suggested a sister relationship between T. aquasubterranea and a big clade comprising T. farleyi, T. tropicalis, T. furgasoni and T. mobilis. The morphological data available for these species show that they share with T. aquasubterranea a pyriformis-like life style and at least two of them, T. farleyi and T. mobilis, a similar type II silverline pattern consisting of primary and secondary meridians. Tetrahymena aquasubterranea exhibits a biphasic life cycle with trophonts and theronts, is amicronucleate, and feeds on bacteria.


Assuntos
Água Subterrânea/microbiologia , Oligoimenóforos/genética , Tetrahymena/genética , Oligoimenóforos/classificação , Filogenia , África do Sul , Tetrahymena/classificação
10.
Eur J Protistol ; 91: 126034, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38006640

RESUMO

Cercozoans and heterolobose amoebae are found across terrestrial habitats where they feed on other unicellular microbes, including bacteria, fungi and microalgae. They constitute a significant fraction of soil ecosystems and are integral members of plant microbiota. Here, we present the results on the isolation of protozoans from the rhizosphere and phyllosphere of Browningia candelaris (Meyen) in the Andean Altiplano and Eulychnia taltalensis (F. Ritter) from the Coastal Cordillera of the Atacama Desert, both endemic to this ancient desert. We identified a new heterolobose amoeba species of the genus Allovahlkampfia isolated from cactus soil, three new species of the different glissomonad genera Allapsa, Neoheteromita, Neocercomonas and one new thecofilosean amoeba of the genus Rhogostoma isolated from the phyllosphere of one studied cactus. In addition, one bacterivorous flagellate was isolated from cactus spines and identified as a member of the non-scaled imbricatean family Spongomonadidae (Spongomonas). The isolation of protists from cactus spines extends the knowledge on the habitat ranges of taxa typically found on plant leaves or soils. The molecular data presented here is a prerequisite for further investigations on the ecology and diversity of protists including next-generation sequencing of microhabitats in plants and the rhizosphere, allowing for deeper taxonomic classification.


Assuntos
Cactaceae , Microbiota , Rizosfera , Bactérias , Plantas , Microbiologia do Solo , Solo
11.
Eur J Protistol ; 89: 125987, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245304

RESUMO

The species richness of eukaryotes in the hypersaline environment is generally thought to be low. However, recent studies showed a high degree of phylogenetic novelty at these extreme conditions with variable chemical parameters. These findings call for a more thorough look into the species richness of hypersaline environments. In this study, various hypersaline lakes (salars, 1-348 PSU) as well as further aquatic ecosystems of northern Chile were investigated regarding diversity of heterotrophic protists by metabarcoding studies of surface water samples. Investigations of genotypes of 18S rRNA genes showed a unique community composition in nearly each salar and even among different microhabitats within one salar. The genotype distribution showed no clear connection to the composition of main ions at the sampling sites, but protist communities from similar salinity ranges (either hypersaline, hyposaline or mesosaline) clustered together regarding their OTU composition. Salars appeared to be fairly isolated systems with only little exchange of protist communities where evolutionary lineages could separately evolve.


Assuntos
Ecossistema , Salinidade , Filogenia , Eucariotos/genética , Lagos , Biodiversidade
12.
Eur J Protistol ; 90: 126008, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37536234

RESUMO

Gregarine apicomplexans, a group of single celled organisms, inhabit the extracellular spaces of most invertebrate species. The nature of the gregarine-host interactions is not yet fully resolved, mutualistic, commensal and parasitic life forms have been recorded. In the extreme arid environment of the Atacama Desert, only a few groups of invertebrates hosting gregarines such as darkling beetles (Tenebrionidae) were able to adapt, providing an unparalleled opportunity to study co-evolutionary diversification. Here, we describe one novel gregarine genus comprising one species, Atacamagregarina paposa gen. et sp. nov., and a new species, Xiphocephalus ovatus sp. nov. (Apicomplexa: Eugregarinoridea, Stylocephalidae), found in the tenebrionid beetle genera Scotobius (Tenebrioninae, Scotobiini) and Psectrascelis intricaticollis ovata (Pimeliinae, Nycteliini), respectively. In the phylogenetic analysis based on SSU rDNA, Atacamgregarina paposa representing the new genus is basal, forming a separate clade with terrestrial gregarines specific for North American darkling beetles.


Assuntos
Apicomplexa , Besouros , Animais , Besouros/genética , Besouros/parasitologia , Filogenia , Evolução Biológica , Apicomplexa/genética , DNA Ribossômico/genética
13.
Eur J Protistol ; 86: 125915, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193607

RESUMO

"Spumella"-like flagellates describes similar or even indiscernible colourless non-scaled chrysophytes which are important bacterivores common in different aquatic ecosystems. Recently, phylogenetic analyses revealed a high taxonomic diversity of these flagellates leading to the description of several new genera and species. Our present work on the functional group of pelagic bacterivorous chrysomonads from different water bodies resulted in an extended taxonomic analysis among chrysophytes unveiling yet undescribed genera and species pointing to the high hidden diversity of bacterivores in the pelagial of freshwaters. On the basis of phylogenetic analyses, we describe four new genera Atacamaspumella, Chlorospumella, Pseudapoikia, and Vivaspumella and a new species of the recently described genus Poteriospumella. Beside this, we redescribe the species Ochromonas vasocystis Doflein, 1923 to Poteriospumella vasocystis comb. nov. substantiated on the high sequence similarity with Poteriospumella lacustris Boenigk et Findenig and Poteriospumella maldiviensis nov. sp.


Assuntos
Ecossistema , Água Doce , Filogenia
14.
Eur J Protistol ; 85: 125905, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35868212

RESUMO

The heterotrophic nanoflagellate genus Cafeteria has been found to be ubiquitously distributed in the marine realm. We could isolate and cultivate ten strains morphologically similar to Cafeteria from various types of environment, including the deep sea, brackish waters and also meso- to hypersaline inland waters. Molecular analyses (18S rDNA, 28S rDNA) of newly isolated strains from the marine realm resulted in four more Cafeteria burkhardae strains from the deep North Atlantic Ocean and one new species (C. baltica sp. nov.) isolated from brackish waters of the Baltic Sea. Two strains isolated from the Atacama Desert belong to two new species (C. atacamiensis sp. nov. and C. paulosalfera sp. nov.), one other strain could not yet be assigned. Morphological characterizations of these strains obtained by high resolution microscopy revealed only small differences to already described species. However, molecular analyses showed a clear separation of the different Cafeteria species. We exposed several strains to different salt concentrations (2-150 PSU) to investigate their salinity tolerance. Only the marine strains of C. burkhardae were able to survive at salinities up to 150 PSU, indicating the possibility to inhabit a broader spectrum of habitats including hypersaline environments besides the deep sea with its high hydrostatic pressure.


Assuntos
Água do Mar , Estramenópilas , Oceano Atlântico , DNA Ribossômico/genética , Ambientes Extremos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estramenópilas/genética
15.
Biofabrication ; 14(3)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35617928

RESUMO

Multicellular agglomerates in form of irregularly shaped or spherical clusters can recapitulate cell-cell interactions and are referred to as microtissues. Microtissues gain increasing attention in several fields including cardiovascular research. Cardiac microtissues are evolving as excellent model systems for drug testingin vitro(organ-on-a-chip), are used as tissue bricks in 3D printing processes and pave the way for improved cell replacement therapiesin vivo. Microtissues are formed for example in hanging drop culture or specialized microwell plates; truly scalable methods are not yet available. In this study, a novel method of encapsulation of cells inpoly-N-isopropylacrylamid(PNIPAAm) spheres is introduced. Murine induced pluripotent stem cell-derived cardiomyocytes and bone marrow-derived mesenchymal stem cells were encapsulated in PNIPAAm by raising the temperature of droplets formed in a microfluidics setup above the lower critical solute temperature (LCST) of 32 °C. PNIPAAM precipitates to a water-insoluble physically linked gel above the LCST and shrinks by the expulsion of water, thereby trapping the cells in a collapsing polymer network and increasing the cell density by one order of magnitude. Within 24 h, stable cardiac microtissues were first formed and later released from their polymer shell by washout of PNIPAAm at temperatures below the LCST. Rhythmically contracting microtissues showed homogenous cell distribution, age-dependent sarcomere organizations and action potential generation. The novel approach is applicable for microtissue formation from various cell types and can be implemented into scalable workflows.


Assuntos
Encapsulamento de Células , Microfluídica , Resinas Acrílicas , Animais , Géis , Camundongos , Engenharia Tecidual , Água
16.
Sci Data ; 9(1): 275, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672417

RESUMO

The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S.

17.
J Eukaryot Microbiol ; 58(2): 114-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21223438

RESUMO

Microdiaphanosoma arcuatum Wenzel, 1953 is a world-wide distributed ciliate, recorded mainly in soil samples, which we have also identified in ground water samples from South Africa. This ciliate has been frequently overlooked or not determined due to its small size, ∼12 µm. The genus Microdiaphanosoma is nowadays included in the class Colpodea, order Bryometopida, family Kreyellidae. The first complete small subunit (SSU) rDNA gene sequence of this ciliate was obtained from a South African isolate. Phylogenetic analysis including available SSU rDNA sequences from another Colpodea species in the GenBank strongly supported the position of M. arcuatum within the order Cyrtolophosidida instead of the order Bryometopida. The analysis also suggested a sister relationship between this species and species from the family Cyrtolophosididae.


Assuntos
Cilióforos/classificação , Cilióforos/genética , Água Doce/parasitologia , Cilióforos/isolamento & purificação , Cilióforos/ultraestrutura , DNA de Protozoário/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , África do Sul
18.
J Eukaryot Microbiol ; 58(5): 452-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21895836

RESUMO

The choanoflagellates (Choanoflagellatea) comprise a major group of nanoflagellates, which are ubiquitous in the aquatic environment. Recent molecular phylogenies have shown them to be the sister group to the Metazoa. However, the phylogeny of the choanoflagellates is still far from understood. We present here a 29 taxon, multigene phylogeny that robustly places the root of the choanoflagellates. One of the original nonloricate families, Codonosigidae is shown to be a polyphyletic assemblage nested within the Salpingoecidae. We elaborate on a revised taxonomy that divides Choanoflagellatea into two orders: Craspedida and Acanthoecida. Craspedida is composed of species that possess an organic cell coating and contains the single family Salpingoecidae. Members of the predominantly marine Acanthoecida produce a siliceous lorica in addition to an organic coat and are contained in two families--the Acanthoecidae and Stephanoecidae fam. n. Previous studies of choanoflagellates have been hindered by cases of taxon misidentification as well as the limited resolution of 18S small subunit (SSU) rDNA phylogenies. Unfortunately, cases of misidentification have been heavily repeated in the literature. In an attempt to avoid further confusion, we highlight known instances of misnamed taxa. We also examine the suitability of SSU rDNA sequences alone for choanoflagellate phylogenetics and recommend the use of protein-coding genes, such as hsp90 and tubA, whenever possible.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Filogenia , DNA Ribossômico/genética , Eucariotos/isolamento & purificação , Dados de Sequência Molecular , Água do Mar/parasitologia
19.
Protist ; 172(1): 125782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352398

RESUMO

Environmental sequencing surveys unveil an unexpected magnitude of protist biodiversity and help to understand environmental community structure as well as biogeographical patterns. The interpretation of these data is still hindered by the lack of a verified and reliable reference database, which is the important basis for all analyses. References should rely on detailed and valid taxonomical descriptions including both morphology and autecological properties. In fact, obtaining such data is still a major challenge as cultivation-based approaches are very selective. In the present study, we highlight the potential to resample habitats which showed phylogenetically interesting sequences from environmental molecular surveys. We have been able to reveal a choanoflagellate species with the use of a single cell isolation approach in order to achieve a morphological description to the target sequence. This new species, Enibas thessalia sp. nov. now extends a recently described monospecific genus. In addition, we illustrate a nudiform lorica reproduction of the genus Enibas by observation of living cells. The genus belongs to the family of Acanthoecidae, which comprises five genera. The morphology of the genus Enibas shows a striking resemblance to the genus Stephanoeca, which belongs to the other family of loricate choanoflagellates, the Stephanoecidae, indicating that morphology alone might not reflect phylogenetic relations. We demonstrate that mapping sequences to a taxonomical description of species is a valuable tool to verify the organism behind an environmental amplicon. We emphasize the urgent need of integrative taxonomy matching molecular data with morphological features to verify the outcome of phylogenetic analyses.


Assuntos
Coanoflagelados , Classificação/métodos , DNA de Protozoário/genética , Coanoflagelados/classificação , Coanoflagelados/genética , Coanoflagelados/ultraestrutura , DNA Ambiental/análise , Filogenia , Especificidade da Espécie
20.
Eur J Protistol ; 79: 125798, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33984646

RESUMO

In contrast to previous perspectives, hypersaline environments have been proven to harbour a variety of potentially highly adapted microorganisms, in particular unicellular eukaryotes. The isolated, hypersaline waterbodies in the Atacama Desert, Northern Chile are exposed to high UV radiation and deposition of toxic heavy metals, making them of great interest regarding studies on speciation and evolutionary processes. In the past two years, among a variety of other protist species, five new species of heterotrophic choanoflagellates were described and analysed from this area, showing an adaptation to a broad range of salinities. Morphological data alone does not allow for species delineation within craspedid species, additional molecular data is essential for modern taxonomy. In addition, molecular clock analyses pointed towards a strong selection force of the extreme environmental conditions. Within this study, we describe three additional craspedid choanoflagellate species, isolated from different aquatic environments. Phylogenetic analyses show two distinct clades of choanoflagellates from the Atacama, suggesting two independent invasions of at least two ancestral marine species, and, as indicated by our new data, a possible dispersal by Andean aquifers. The extended molecular clock analysis based on transcriptomic data of choanoflagellate strains from the Salar de Llamará, a hypersaline basin within the Central Depression of the Atacama Desert, reflects colonisation and divergence events which correspond to geological data of the paleohydrology.


Assuntos
Coanoflagelados , Filogenia , Adaptação Fisiológica , Biodiversidade , Chile , Coanoflagelados/classificação , Coanoflagelados/citologia , Coanoflagelados/genética , Clima Desértico , Salinidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa