Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720368

RESUMO

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Assuntos
Volume de Ventilação Pulmonar , Animais , Ovinos , Feminino , Humanos , Volume de Ventilação Pulmonar/fisiologia , Sangue Fetal/citologia , Gravidez , Citocinas/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Animais Recém-Nascidos
2.
Pediatr Res ; 95(6): 1510-1518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225450

RESUMO

BACKGROUND: Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS: Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS: Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS: Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT: Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.


Assuntos
Encéfalo , Retardo do Crescimento Fetal , Melatonina , Fármacos Neuroprotetores , Insuficiência Placentária , Melatonina/administração & dosagem , Melatonina/farmacologia , Animais , Retardo do Crescimento Fetal/prevenção & controle , Retardo do Crescimento Fetal/tratamento farmacológico , Feminino , Gravidez , Fármacos Neuroprotetores/administração & dosagem , Ovinos , Insuficiência Placentária/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo
3.
Ann Neurol ; 92(6): 1066-1079, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054160

RESUMO

OBJECTIVE: Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS: Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS: Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION: Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.


Assuntos
Asfixia Neonatal , Epilepsia , Pregnanolona , Animais , Humanos , Recém-Nascido , Anticonvulsivantes/uso terapêutico , Asfixia Neonatal/complicações , Asfixia Neonatal/tratamento farmacológico , Epilepsia/tratamento farmacológico , Fenobarbital/uso terapêutico , Convulsões/tratamento farmacológico , Ovinos , Animais Recém-Nascidos , Modelos Animais de Doenças
4.
J Physiol ; 600(13): 3193-3210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35587817

RESUMO

Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg-1  h-1 ) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from -24 to 72 h post-UCO and analysed for percentage change of hydroxyl radicals (• OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post-mortem 72 h post-UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral • OH outflow 0 to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia ( PO2${P_{{{\rm{O}}_{\rm{2}}}}}$ and SO2${S_{{{\rm{O}}_{\rm{2}}}}}$ ) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and • OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of • OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia. KEY POINTS: Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine-monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days' gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and • OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.


Assuntos
Creatina , Hipóxia Fetal , Animais , Creatina/metabolismo , Creatina/farmacologia , Suplementos Nutricionais , Feminino , Hipóxia Fetal/metabolismo , Feto/metabolismo , Glicerol/metabolismo , Humanos , Hipóxia/metabolismo , Lactatos , Estresse Oxidativo , Gravidez , Piruvatos/metabolismo , Ovinos , Cordão Umbilical/fisiologia
5.
J Pineal Res ; 71(1): e12744, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34032315

RESUMO

Therapeutic hypothermia (TH) is standard care in high-resource birth settings for infants with neonatal encephalopathy. TH is partially effective and adjuvant therapies are needed. Here, we examined whether the antioxidant melatonin (MLT) provides additive benefit with TH, compared to TH alone or MLT alone, to improve recovery from acute encephalopathy in newborn lambs. Immediately before cesarean section delivery, we induced asphyxia in fetal sheep via umbilical cord occlusion until mean arterial blood pressure fell from 55 ± 3 mm Hg in sham controls to 18-20 mm Hg (10.1 ± 1.5 minutes). Lambs were delivered and randomized to control, control + MLT (60 mg iv, from 30 minutes to 24 hours), asphyxia, asphyxia + TH (whole-body cooling to 35.1 ± 0.8°C vs. 38.3 ± 0.17°C in sham controls, from 4-28 hours), asphyxia + MLT, and asphyxia + TH + MLT. At 72 hours, magnetic resonance spectroscopy (MRS) was undertaken, and then brains were collected for neuropathology assessment. Asphyxia induced abnormal brain metabolism on MRS with increased Lactate:NAA (P = .003) and reduced NAA:Choline (P = .005), induced apoptotic and necrotic cell death across gray and white matter brain regions (P < .05), and increased neuroinflammation and oxidative stress (P < .05). TH and MLT were independently associated with region-specific reductions in oxidative stress, inflammation, and cell death, compared to asphyxia alone. There was an interaction between TH and MLT such that the NAA:Choline ratio was not significantly different after asphyxia + TH + MLT compared to sham controls but had a greater overall reduction in neuropathology than either treatment alone. This study demonstrates that, in newborn lambs, combined TH + MLT for neonatal encephalopathy provides significantly greater neuroprotection than either alone. These results will guide the development of further trials for neonatal encephalopathy.


Assuntos
Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/patologia , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Asfixia Neonatal/complicações , Hipóxia-Isquemia Encefálica/etiologia , Ovinos
6.
J Physiol ; 598(19): 4405-4419, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32754905

RESUMO

KEY POINTS: Fetal growth restriction induces a haemodynamic response that aims to maintain blood flow to vital organs such as the brain, in the face of chronic hypoxaemia Maternal sildenafil treatment impairs the hypoxaemia-driven haemodynamic response and potentially compromises fetal development. ABSTRACT: Inadequate substrate delivery to a fetus results in hypoxaemia and fetal growth restriction (FGR). In response, fetal cardiovascular adaptations redirect cardiac output to essential organs to maintain oxygen delivery and sustain development. However, FGR infants remain at risk for cardiovascular and neurological sequelae. Sildenafil citrate (SC) has been examined as a clinical therapy for FGR, but also crosses the placenta and may exert direct effects on the fetus. We investigated the effects of maternal SC administration on maternal and fetal cardiovascular physiology in growth-restricted fetal sheep. Fetal sheep (0.7 gestation) underwent sterile surgery to induce growth restriction by single umbilical artery ligation (SUAL) or sham surgery (control, AG). Fetal catheters and flow probes were implanted to measure carotid and femoral arterial blood flows. Ewes containing SUAL fetuses were randomized to receive either maternal administration of saline or SC (36 mg i.v. per day) beginning 4 days after surgery, and continuing for 20 days. Physiological recordings were obtained throughout the study. Antenatal SC treatment reduced body weight by 32% and oxygenation by 18% in SUAL compared to AG. SC did not alter maternal or fetal heart rate or blood pressure. Femoral blood flow and peripheral oxygen delivery were increased by 49% and 30% respectively in SUALSC compared to SUAL, indicating impaired cardiovascular adaptation to chronic hypoxaemia. Antenatal SC directly impairs the fetal haemodynamic response to chronic hypoxaemia. Consideration of the consequences upon the fetus should be paramount when administering interventions to the mother during pregnancy.


Assuntos
Retardo do Crescimento Fetal , Feto , Animais , Feminino , Desenvolvimento Fetal , Hipóxia , Gravidez , Ovinos , Citrato de Sildenafila/farmacologia
7.
Exp Physiol ; 105(8): 1256-1267, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436635

RESUMO

NEW FINDINGS: What is the central question of this study? What is the immediate impact of moderate preterm birth on the structure and function of major conduit arteries using a pre-clinical sheep model? What is the main finding and its importance? Postnatal changes in conduit arteries, including a significant decrease in collagen within the thoracic aortic wall (predominately males), narrowed carotid arteries, reduced aortic systolic blood flow, and upregulation of the mRNA expression of cell adhesion and inflammatory markers at 2 days of age in preterm lambs compared to controls, may increase the risk of cardiovascular impairment in later life. ABSTRACT: The aim of this work was to compare the structure and function of the conduit arteries of moderately preterm and term-born lambs and to determine whether vascular injury-associated genes were upregulated. Time-mated ewes were induced to deliver either preterm (132 ± 1 days of gestation; n = 11 females and n = 10 males) or at term (147 ± 1 days of gestation; n = 10 females and n = 5 males). Two days after birth, ultrasound imaging of the proximal ascending aorta, main, right and left pulmonary arteries, and right and left common carotid arteries was conducted in anaesthetized lambs. Lambs were then killed and segments of the thoracic aorta and left common carotid artery were either snap frozen for real-time PCR analyses or immersion-fixed for histological quantification of collagen, smooth muscle and elastin within the medial layer. Overall there were few differences in vascular structure between moderately preterm and term lambs. However, there was a significant decrease in the proportion of collagen within the thoracic aortic wall (predominantly in males), narrowing of the common carotid arteries and a reduction in peak aortic systolic blood flow in preterm lambs. In addition, there was increased mRNA expression of the cell adhesion marker P-selectin in the thoracic aortic wall and the pro-inflammatory marker IL-1ß in the left common carotid artery in preterm lambs, suggestive of postnatal vascular injury. Early postnatal differences in the function and structure of conduit arteries and evidence of vascular injury in moderately preterm offspring may place them at greater risk of cardiovascular impairment later in life.


Assuntos
Artérias Carótidas/fisiopatologia , Nascimento Prematuro/fisiopatologia , Artéria Pulmonar/fisiopatologia , Animais , Animais Recém-Nascidos , Aorta/fisiopatologia , Aorta Torácica/fisiopatologia , Colágeno/metabolismo , Feminino , Expressão Gênica , Hemodinâmica , Masculino , Ovinos
8.
Pediatr Res ; 88(1): 27-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32120374

RESUMO

BACKGROUND: Mechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age. METHODS: Preterm lambs were delivered by cesarean section at 128-130 days' gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth. RESULTS: Ventilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood-brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter. CONCLUSIONS: Mechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury. IMPACT: Mechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.


Assuntos
Âmnio/metabolismo , Encéfalo/patologia , Transplante de Células/métodos , Células Epiteliais/metabolismo , Inflamação , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica , Proliferação de Células , Feminino , Substância Cinzenta/patologia , Humanos , Infusões Intravenosas , Masculino , Microglia/metabolismo , Oligodendroglia/metabolismo , Permeabilidade , Regeneração , Respiração Artificial , Ovinos , Substância Branca/patologia
9.
Pediatr Res ; 86(2): 165-173, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30858474

RESUMO

BACKGROUND: Chorioamnionitis and fetal inflammation are principal causes of neuropathology detected after birth, particularly in very preterm infants. Preclinical studies show that umbilical cord blood (UCB) cells are neuroprotective, but it is uncertain if allogeneic UCB cells are a feasible early intervention for preterm infants. In contrast, mesenchymal stem cells (MSCs) are more readily accessible and show strong anti-inflammatory benefits. We aimed to compare the neuroprotective benefits of UCB versus MSCs in a large animal model of inflammation-induced preterm brain injury. We hypothesized that MSCs would afford greater neuroprotection. METHODS: Chronically instrumented fetal sheep at 0.65 gestation received intravenous lipopolysaccharide (150 ng; 055:B5, n = 8) over 3 consecutive days; or saline for controls (n = 8). Cell-treated animals received 108 UCB mononuclear cells (n = 7) or 107 umbilical cord MSCs (n = 8), intravenously, 6 h after the final lipopolysaccharide dose. Seven days later, cerebrospinal fluid and brain tissue was collected for analysis. RESULTS: Lipopolysaccharide induced neuroinflammation and apoptosis, and reduced the number of mature oligodendrocytes. MSCs reduced astrogliosis, but UCB did not have the same effect. UCB significantly decreased cerebral apoptosis and protected mature myelinating oligodendrocytes, but MSCs did not. CONCLUSION: UCB appears to better protect white matter development in the preterm brain in response to inflammation-induced brain injury in fetal sheep.


Assuntos
Astrócitos/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/terapia , Sangue Fetal/citologia , Gliose/fisiopatologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Animais Recém-Nascidos , Apoptose , Morte Celular , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/citologia , Lipopolissacarídeos , Masculino , Neuroproteção , Oligodendroglia/citologia , Ovinos , Substância Branca/patologia
10.
J Physiol ; 596(23): 5965-5975, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29508407

RESUMO

KEY POINTS: Preterm birth occurs when the heart muscle is immature and ill-prepared for the changes in heart and lung function at birth. MRI imaging studies show differences in the growth and function of the heart of young adults born preterm, with the effects more pronounced in the right ventricle. The findings of this study, conducted in sheep, showed that following moderate preterm birth the right ventricular wall was thinner in adulthood, with a reduction in the number and size of the heart muscle cells; in addition, there was impaired blood flow in the main artery leading from the right ventricle to the lungs. The findings indicate that being born only a few weeks early adversely affects the cellular structure of the right ventricle and blood flow to the lungs in adulthood. The reduced number of heart muscle cells has the potential to deleteriously affect right ventricular growth potential and function. ABSTRACT: Preterm birth prematurely exposes the immature heart to the haemodynamic transition at birth, which has the potential to induce abnormal cardiac remodelling. Magnetic resonance imaging studies in young adults born preterm have shown abnormalities in the gross structure of the ventricles (particularly the right ventricle; RV), but the cellular basis of these alterations is unknown. The aim of this study, conducted in sheep, was to determine the effect of moderate preterm birth on RV cellular structure and function in early adulthood. Male singleton lambs were delivered moderately preterm (132 ± 1 days; n = 7) or at term (147 ± 1 days; n = 7). At 14.5 months of age, intra-arterial blood pressure and heart rate were measured. Pulmonary artery diameter and peak systolic blood flow were determined using ultrasound imaging, and RV stroke volume and output calculated. Cardiomyocyte number, size, nuclearity and levels of cardiac fibrosis were subsequently assessed in perfusion-fixed hearts using image analysis and stereological methods. Blood pressure (systolic, diastolic and mean), heart rate, levels of myocardial fibrosis and RV stroke volume and output were not different between groups. There was, however, a significant reduction in RV wall thickness in preterm sheep, and this was accompanied by a significant reduction in peak systolic blood flow in the pulmonary artery and in RV cardiomyocyte number. Cellular changes in the RV wall and reduced pulmonary artery blood flow following preterm birth have the potential to adversely affect cardiac and respiratory haemodynamics, especially when the cardiovascular system is physiologically or pathologically challenged.


Assuntos
Artéria Pulmonar/fisiologia , Função Ventricular Direita , Animais , Animais Recém-Nascidos , Pressão Sanguínea , Feminino , Frequência Cardíaca , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/fisiopatologia , Masculino , Gravidez , Ovinos
11.
Dev Neurosci ; 40(3): 258-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30179864

RESUMO

BACKGROUND: Infants born preterm following exposure to in utero inflammation/chorioamnionitis are at high risk of brain injury and life-long neurological deficits. In this study, we assessed the efficacy of early intervention umbilical cord blood (UCB) cell therapy in a large animal model of preterm brain inflammation and injury. We hypothesised that UCB treatment would be neuroprotective for the preterm brain following subclinical fetal inflammation. METHODS: Chronically instrumented fetal sheep at 0.65 gestation were administered lipopolysaccharide (LPS, 150 ng, 055:B5) intravenously over 3 consecutive days, followed by 100 million human UCB mononuclear cells 6 h after the final LPS dose. Controls were administered saline instead of LPS and cells. Ten days after the first LPS dose, the fetal brain and cerebrospinal fluid were collected for analysis of subcortical and periventricular white matter injury and inflammation. RESULTS: LPS administration increased microglial aggregate size, neutrophil recruitment, astrogliosis and cell death compared with controls. LPS also reduced total oligodendrocyte count and decreased mature myelinating oligodendrocytes. UCB cell therapy attenuated cell death and inflammation, and recovered total and mature oligodendrocytes, compared with LPS. CONCLUSIONS: UCB cell treatment following inflammation reduces preterm white matter brain injury, likely mediated via anti-inflammatory actions.


Assuntos
Lesões Encefálicas/terapia , Encefalite/terapia , Sangue Fetal/citologia , Lipopolissacarídeos/farmacologia , Animais , Corioamnionite/terapia , Modelos Animais de Doenças , Feminino , Feto/citologia , Humanos , Microglia/citologia , Gravidez , Ovinos , Substância Branca/efeitos dos fármacos
12.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1183-R1194, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230932

RESUMO

Fetal growth restriction (FGR) and prematurity are associated with high risk of brain injury and long-term neurological deficits. FGR infants born preterm are commonly exposed to mechanical ventilation, but it is not known whether ventilation differentially induces brain pathology in FGR infants compared with appropriate for gestational age (AGA) infants. We investigated markers of neuropathology in moderate- to late-preterm FGR lambs, compared with AGA lambs, delivered by caesarean birth and ventilated under standard neonatal conditions for 24 h. FGR was induced by single umbilical artery ligation in fetal sheep at 88-day gestation (term, 150 days). At 125-day gestation, FGR and AGA lambs were delivered, dried, intubated, and commenced on noninjurious ventilation, with surfactant administration at 10 min. A group of unventilated FGR and AGA lambs at the same gestation was also examined. Over 24 h, circulating pH, Po2, and lactate levels were similar between groups. Ventilated FGR lambs had lower cerebral blood flow compared with AGA lambs ( P = 0.01). The brain of ventilated FGR lambs showed neuropathology compared with unventilated FGR, and unventilated and ventilated AGA lambs, with increased apoptosis (caspase-3), blood-brain barrier dysfunction (albumin extravasation), activated microglia (Iba-1), and increased expression of cellular oxidative stress (4-hydroxynonenal). The neuropathologies seen in the ventilated FGR brain were most pronounced in the periventricular and subcortical white matter but also evident in the subventricular zone, cortical gray matter, and hippocampus. Ventilation of preterm FGR lambs increased brain injury compared with AGA preterm lambs and unventilated FGR lambs, mediated via increased vascular permeability, neuroinflammation and oxidative stress.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/patologia , Retardo do Crescimento Fetal/patologia , Neuropatologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Feminino , Retardo do Crescimento Fetal/metabolismo , Idade Gestacional , Gravidez , Ovinos
13.
Exp Physiol ; 103(1): 9-18, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29072344

RESUMO

NEW FINDINGS: What is the central question of this study? Late preterm infants are often assumed to escape long-term morbidities known to impact earlier preterm offspring. Is this true for the cardiovascular system? What is the main finding and its importance? We show that late preterm birth is a risk factor for cardiovascular dysfunction in early adulthood and is influenced by sex. Early signs of cardiovascular dysfunction might predispose to heart disease in adulthood. Very preterm infants have an increased risk of cardiovascular disease; however, the effects of a late preterm birth on future cardiovascular function are not known. We hypothesized that after a late preterm birth, the well-described impairments in heart rate variability and baroreflex sensitivity would persist into adulthood. To test this hypothesis, sheep born preterm (0.9 gestation; nine male and seven female) or term (11 male and six female) underwent surgery at 14 months of age for insertion of femoral arterial and venous catheters and a femoral flow probe. After recovery, heart rate variability was assessed, followed by a baroreflex challenge (using the vasoactive agents phenylephrine and sodium nitroprusside) in conscious adult lambs. Our data demonstrate decreased low-frequency normalised units (LFnu) and low-frequency/high-frequency ratio in female but not male ex-preterm sheep at rest. When challenged, mature male ex-preterm sheep have an increased blood pressure response but dampened heart rate baroreflex response. We show that even a late preterm birth leads to cardiovascular dysfunction in adulthood. These early signs of cardiovascular dysfunction might underpin the later hypertension and increased risk of heart disease observed in adults born preterm. These findings are particularly important because late preterm infants are often assumed to escape the long-term morbidities known to impact on very preterm and extremely preterm offspring.


Assuntos
Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Nascimento Prematuro/fisiopatologia , Caracteres Sexuais , Animais , Peso ao Nascer/fisiologia , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Feminino , Masculino , Fatores de Risco , Ovinos
14.
Pediatr Res ; 84(3): 442-450, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976968

RESUMO

BACKGROUND: Impaired cerebral autoregulation in preterm infants makes circulatory management important to avoid cerebral hypoxic-ischemic injury. Dobutamine is frequently used as inotropic treatment in preterm neonates, but its effects on the brain exposed to cerebral hypoxia are unknown. We hypothesized that dobutamine would protect the immature brain from cerebral hypoxic injury. METHODS: In preterm (0.6 gestation) fetal sheep, dobutamine (Dob, 10 µg/kg/min) or saline (Sal) was infused intravenously for 74 h. Two hours after the beginning of the infusion, umbilical cord occlusion (UCO) was performed to produce fetal asphyxia (Sal+UCO: n = 9, Dob+UCO: n = 7), or sham occlusion (Sal+sham: n = 7, Dob+sham: n = 6) was performed. Brains were collected 72 h later for neuropathology. RESULTS: Dobutamine did not induce cerebral changes in the sham UCO group. UCO increased apoptosis and microglia density in white matter, hippocampus, and caudate nucleus, and astrocyte density in the caudate nucleus. Dobutamine commenced before UCO reduced microglia infiltration in the white matter, and microglial and astrocyte density in the caudate. CONCLUSION: In preterm hypoxia-induced brain injury, dobutamine decreases neuroinflammation in the white matter and caudate, and reduces astrogliosis in the caudate. Early administration of dobutamine in preterm infants for cardiovascular stabilization appears safe and may be neuroprotective against unforeseeable cerebral hypoxic injury.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Dobutamina/uso terapêutico , Hipóxia Fetal/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Inflamação/tratamento farmacológico , Animais , Asfixia Neonatal/patologia , Gasometria , Peso Corporal , Modelos Animais de Doenças , Dopamina/farmacologia , Eletrocardiografia , Feminino , Frequência Cardíaca , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Inflamação/patologia , Microglia , Neurônios , Tamanho do Órgão , Estresse Oxidativo , Gravidez , Prenhez , Ovinos
15.
J Pineal Res ; 64(4): e12479, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29464766

RESUMO

Perinatal asphyxia remains a principal cause of infant mortality and long-term neurological morbidity, particularly in low-resource countries. No neuroprotective interventions are currently available. Melatonin (MLT), a potent antioxidant, anti-inflammatory and antiapoptotic agent, offers promise as an intravenous (IV) or transdermal therapy to protect the brain. We aimed to determine the effect of melatonin (IV or transdermal patch) on neuropathology in a lamb model of perinatal asphyxia. Asphyxia was induced in newborn lambs via umbilical cord occlusion at birth. Animals were randomly allocated to melatonin commencing 30 minutes after birth (60 mg in 24 hours; IV or transdermal patch). Brain magnetic resonance spectroscopy (MRS) was undertaken at 12 and 72 hours. Animals (control n = 9; control+MLT n = 6; asphyxia n = 16; asphyxia+MLT [IV n = 14; patch n = 4]) were euthanised at 72 hours, and cerebrospinal fluid (CSF) and brains were collected for analysis. Asphyxia resulted in severe acidosis (pH 6.9 ± 0.0; lactate 9 ± 2 mmol/L) and altered determinants of encephalopathy. MRS lactate:N-acetyl aspartate ratio was 2.5-fold higher in asphyxia lambs compared with controls at 12 hours and 3-fold higher at 72 hours (P < .05). Melatonin prevented this rise (3.5-fold reduced vs asphyxia; P = .02). Asphyxia significantly increased brain white and grey matter apoptotic cell death (activated caspase-3), lipid peroxidation (4HNE) and neuroinflammation (IBA-1). These changes were significantly mitigated by both IV and patch melatonin. Systemic or transdermal neonatal melatonin administration significantly reduces the neuropathology and encephalopathy signs associated with perinatal asphyxia. A simple melatonin patch, administered soon after birth, may improve outcome in infants affected by asphyxia, especially in low-resource settings.


Assuntos
Asfixia Neonatal/patologia , Encéfalo/efeitos dos fármacos , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Distribuição Aleatória , Ovinos
16.
Pediatr Res ; 82(6): 1030-1038, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28723885

RESUMO

BACKGROUNDWhite matter brain injury in preterm infants can induce neurodevelopmental deficits. Umbilical cord blood (UCB) cells demonstrate neuroprotective properties, but it is unknown whether cells obtained from preterm cord blood (PCB) vs. term cord blood (TCB) have similar efficacy. This study compared the ability of TCB vs. PCB cells to reduce white matter injury in preterm fetal sheep.METHODSHypoxia-ischemia (HI) was induced in fetal sheep (0.7 gestation) by 25 min umbilical cord occlusion. Allogeneic UCB cells from term or preterm sheep, or saline, were administered to the fetus at 12 h after HI. The fetal brain was collected at 10-day post HI for assessment of white matter neuropathology.RESULTSHI (n=7) induced cell death and microglial activation and reduced total oligodendrocytes and CNPase+myelin protein in the periventricular white matter and internal capsule when compared with control (n=10). Administration of TCB or PCB cells normalized white matter density and reduced cell death and microgliosis (P<0.05). PCB prevented upregulation of plasma tumor necrosis factor (TNF)-a, whereas TCB increased anti-inflammatory interleukin (IL)-10 (P<0.05). TCB, but not PCB, reduced circulating oxidative stress.CONCLUSIONSTCB and PCB cells reduced preterm HI-induced white matter injury, primarily via anti-inflammatory actions. The secondary mechanisms of neuroprotection appear different following TCB vs. PCB administration.


Assuntos
Lesões Encefálicas/prevenção & controle , Sangue Fetal/citologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Nascimento Prematuro , Carneiro Doméstico/embriologia , Animais , Lesões Encefálicas/patologia , Morte Celular , Proliferação de Células , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Hipóxia-Isquemia Encefálica/patologia , Microglia/patologia , Estresse Oxidativo , Substância Branca/lesões
17.
J Physiol ; 594(5): 1421-35, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26527561

RESUMO

Perinatal asphyxia is a significant cause of death or long-term neurodevelopmental impairment. Hypothermia, currently the only effective treatment, leads to modest improvements, but new therapeutic strategies are required. Umbilical cord blood (UCB) mononuclear cells have potent anti-inflammatory properties and may reduce neuropathology. This study examined whether autologous UCB mononuclear cells were neuroprotective when administered to newborn lambs at 12 h after birth asphyxia. At caesarean section, birth asphyxia was induced by clamping the umbilical cord until mean arterial blood pressure decreased to 18-20 mmHg. Asphyxia (n = 20) or control (n = 11) lambs were resuscitated and maintained, with magnetic resonance spectroscropy (MRS) performed at 12 and 72 h, and were then killed at 72 h. Cord blood was collected once the cord was clamped, and mononuclear cells were isolated and labelled fluorescently and administered to control (n = 3) or asphyxia (n = 8) lambs. Asphyxia induced a significant increase in cellular apoptosis (caspase-3 immunopositive) within all brain regions examined, including cortex, hippocampus, thalamus, striatum and subcortical white matter (P < 0.01 vs. control). Additionally, asphyxia induced significant and widespread astrogliosis and increased inflammatory cells (activated microglia and macrophages). The administration of UCB mononuclear cells (asphyxia+UCB) significantly decreased neuronal apoptosis, astrogliosis and inflammation (P < 0.05 vs. asphyxia alone). Asphyxia+UCB lambs also demonstrated decreased brain metabolites lactate:choline (P = 0.01) and lactate:N-acetylaspartate (P < 0.01) from 12 to 72 h, detected using MRS. Autologous UCB mononuclear cell treatment restores normal brain metabolism following perinatal asphyxia, and reduces brain inflammation, astrogliosis and neuronal apoptosis, supporting its use as a neuroprotective therapy following asphyxia.


Assuntos
Apoptose , Encéfalo/patologia , Hipóxia Fetal/patologia , Leucócitos Mononucleares/transplante , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Feminino , Sangue Fetal/citologia , Hipóxia Fetal/terapia , Masculino , Neurônios/patologia , Gravidez , Ovinos , Transplante Autólogo
18.
Prenat Diagn ; 35(1): 74-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25156608

RESUMO

OBJECTIVE: We aimed to assess the feasibility of using a percutaneous transhepatic cardiac catheterization technique to perform fetal pulmonary valvuloplasty and valvulotomy under ultrasound guidance at mid-gestation. METHOD: In 13 mid-gestation fetal lambs without cardiac pathology, percutaneous transhepatic cardiac catheterization was used to position a coronary angioplasty catheter within the pulmonary valve. The balloon was inflated/deflated several times, simulating pulmonary valvuloplasty. In another two fetal lambs, a guidewire tip was positioned against the pulmonary valve, and unipolar diathermy was applied to simulate perforation of an atretic valve. RESULTS: Percutaneous access followed by right heart catheterization was successful in all cases. One fetus died following right ventricle perforation. Simulated pulmonary valvuloplasty was successful in nine cases using catheters with 6-mm-long balloons but unsuccessful in two cases (both survived) using 12-mm-long balloons. In one case, the catheter could not be inserted as the cannula became dislodged. Diathermy of the pulmonary valve was successful in both attempts. CONCLUSION: We successfully simulated in utero perforation and dilation of the pulmonary valve using percutaneous transhepatic access in fetal lambs. The technique has potential for clinical translation into treatment for human fetuses with critical pulmonary stenosis or pulmonary atresia with intact ventricular septum.


Assuntos
Cateterismo Cardíaco , Procedimentos Cirúrgicos Cardiovasculares/métodos , Coração Fetal/cirurgia , Fetoscopia/métodos , Valva Pulmonar/cirurgia , Ovinos , Animais , Valvuloplastia com Balão/métodos , Valvuloplastia com Balão/veterinária , Cateterismo Cardíaco/métodos , Cateterismo Cardíaco/veterinária , Procedimentos Cirúrgicos Cardiovasculares/veterinária , Estudos de Viabilidade , Feminino , Coração Fetal/diagnóstico por imagem , Fetoscopia/veterinária , Idade Gestacional , Humanos , Modelos Animais , Gravidez , Atresia Pulmonar/diagnóstico por imagem , Atresia Pulmonar/cirurgia , Valva Pulmonar/diagnóstico por imagem , Estenose da Valva Pulmonar/diagnóstico por imagem , Estenose da Valva Pulmonar/cirurgia , Ultrassonografia
19.
Biol Reprod ; 90(2): 27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337316

RESUMO

Ureaplasmas are the microorganisms most frequently isolated from the amniotic fluid of pregnant women and can cause chronic intrauterine infections. These tiny bacteria are thought to undergo rapid evolution and exhibit a hypermutatable phenotype; however, little is known about how ureaplasmas respond to selective pressures in utero. Using an ovine model of chronic intraamniotic infection, we investigated if exposure of ureaplasmas to subinhibitory concentrations of erythromycin could induce phenotypic or genetic indicators of macrolide resistance. At 55 days gestation, 12 pregnant ewes received an intraamniotic injection of a nonclonal, clinical Ureaplasma parvum strain followed by (i) erythromycin treatment (intramuscularly, 30 mg/kg/day, n = 6) or (ii) saline (intramuscularly, n = 6) at 100 days gestation. Fetuses were then delivered surgically at 125 days gestation. Despite injecting the same inoculum into all the ewes, significant differences between amniotic fluid and chorioamnion ureaplasmas were detected following chronic intraamniotic infection. Numerous polymorphisms were observed in domain V of the 23S rRNA gene of ureaplasmas isolated from the chorioamnion (but not the amniotic fluid), resulting in a mosaiclike sequence. Chorioamnion isolates also harbored the macrolide resistance genes erm(B) and msr(D) and were associated with variable roxithromycin minimum inhibitory concentrations. Remarkably, this variability occurred independently of exposure of ureaplasmas to erythromycin, suggesting that low-level erythromycin exposure does not induce ureaplasmal macrolide resistance in utero. Rather, the significant differences observed between amniotic fluid and chorioamnion ureaplasmas suggest that different anatomical sites may select for ureaplasma subtypes within nonclonal, clinical strains. This may have implications for the treatment of intrauterine ureaplasma infections.


Assuntos
Membranas Extraembrionárias/microbiologia , Feto/microbiologia , Variação Genética , Seleção Genética , Infecções por Ureaplasma/microbiologia , Ureaplasma/genética , Ureaplasma/isolamento & purificação , Líquido Amniótico/microbiologia , Animais , Antibacterianos/farmacologia , Corioamnionite/microbiologia , Corioamnionite/veterinária , Feminino , Genes Bacterianos , Variação Genética/efeitos dos fármacos , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/veterinária , Seleção Genética/efeitos dos fármacos , Ovinos , Ureaplasma/efeitos dos fármacos , Infecções por Ureaplasma/veterinária
20.
Pediatr Res ; 75(4): 500-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24441106

RESUMO

BACKGROUND: Intra-amniotic lipopolysaccharide (LPS) exposure may affect neonatal outcome by altering fetal lung and immune system development. We hypothesized that intra-amniotic LPS exposure would cause persistent fetal pulmonary responses as the lungs develop in utero. METHODS: Fetal lambs were exposed to intra-amniotic LPS at 118 or at 118 and 123 d of gestational age (GA) with delivery at 125, 133, or 140 d (term = 147 d). Immune responses, PU.1 expression, Toll-like receptor (TLR)-1,2,4,6 mRNA levels, mast cell levels, and pulmonary elastin deposition were evaluated. RESULTS: After a single dose of LPS, pulmonary inflammatory responses were observed with increases of (i) PU.1 and TLR1 at 125 d GA and (ii) monocytes, lymphocytes, TLR2, and TLR6 at 133 d GA. Repetitive LPS exposure resulted in (i) increases of neutrophils, monocytes, PU.1, and TLR1 at 125 d GA; (ii) increases of neutrophils, PU.1, and TLR2 at 133 d GA; and (iii) decreases of mast cells, elastin foci, TLR4, and TLR6 at early gestation. At 140 d GA, only PU.1 was increased after repetitive LPS exposure. CONCLUSION: The preterm fetal lung can respond to a single exposure or repeated exposures from intra-amniotic LPS in multiple ways, but the absence of inflammatory and structural changes in LPS-exposed fetuses delivered near term suggest that the fetus can resolve an inflammatory stimulus in utero with time.


Assuntos
Lipopolissacarídeos/farmacologia , Pulmão/embriologia , Prenhez , Ovinos/embriologia , Animais , Peso Corporal , Feminino , Pulmão/efeitos dos fármacos , Tamanho do Órgão , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa