Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Basic Res Cardiol ; 118(1): 19, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193927

RESUMO

Preclinical cardiovascular research relies heavily on non-invasive in-vivo echocardiography in mice and rats to assess cardiac function and morphology, since the complex interaction of heart, circulation, and peripheral organs are challenging to mimic ex-vivo. While n-numbers of annually used laboratory animals worldwide approach 200 million, increasing efforts are made by basic scientists aiming to reduce animal numbers in cardiovascular research according to the 3R's principle. The chicken egg is well-established as a physiological correlate and model for angiogenesis research but has barely been used to assess cardiac (patho-) physiology. Here, we tested whether the established in-ovo system of incubated chicken eggs interfaced with commercially available small animal echocardiography would be a suitable alternative test system in experimental cardiology. To this end, we defined a workflow to assess cardiac function in 8-13-day-old chicken embryos using a commercially available high resolution ultrasound system for small animals (Vevo 3100, Fujifilm Visualsonics Inc.) equipped with a high frequency probe (MX700; centre transmit: 50 MHz). We provide detailed standard operating procedures for sample preparation, image acquisition, data analysis, reference values for left and right ventricular function and dimensions, and inter-observer variabilities. Finally, we challenged incubated chicken eggs with two interventions well-known to affect cardiac physiology-metoprolol treatment and hypoxic exposure-to demonstrate the sensitivity of in-ovo echocardiography. In conclusion, in-ovo echocardiography is a feasible alternative tool for basic cardiovascular research, which can easily be implemented into the small animal research environment using existing infrastructure to replace mice and rat experiments, and thus, reduce use of laboratory animals according to the 3R principle.


Assuntos
Ecocardiografia , Coração , Embrião de Galinha , Ratos , Camundongos , Animais
2.
Arch Pharm (Weinheim) ; 356(2): e2200422, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442846

RESUMO

Colorectal cancer is the third most common cause of cancer-associated deaths due to a high recurrence rate and an increasing occurrence of resistance to established therapies. This highlights the importance of developing new chemotherapeutic agents. The current study focuses on cancer-specific targets such as apoptosis-inhibiting survivin, which distinguishes cancer cells from healthy tissue. A combination of pharmacophores of established anticancer agents to afford chimeric pleiotropic chemotherapeutic agents was tested on this cancer entity. We analysed the effects of the dual mode anticancer agents, animthioxam, brimbam, troxbam, and troxham, as well as their structural congeners suberoylanilide hydroxamic acid and combretastatin A-4 on human cancer cell lines. Their cytotoxicity was determined using the MTT assay, further techniques for detecting apoptotic events, cell cycle analyses, clonogenic and wound healing assays, immunostaining, histone deacetylase (HDAC) activity measurements, and Western blot analysis for the detection of survivin expression in HCT116 colon cancer cells. Molecular docking studies were conducted to assess potential molecular targets of the test compounds. The test compounds were found selectively cytotoxic toward cancer cells by inducing apoptosis. The metastatic potential was effectively reduced by disruption of the microtubular cytoskeleton. The test compounds were also proven to be general HDAC inhibitors and to lead to reduced survivin expression.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Survivina/farmacologia , Neoplasias Colorretais/tratamento farmacológico
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835501

RESUMO

A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/metabolismo , Humanos , Desenho de Fármacos
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614289

RESUMO

New N-alkylindole-substituted 2-(pyrid-3-yl)-acrylonitriles with putative kinase inhibitory activity and their (p-cymene)Ru(II) piano-stool complexes were prepared and tested for their antiproliferative efficacy in various cancer models. Some of the indole-based derivatives inhibited tumor cell proliferation at (sub-)micromolar concentrations with IC50 values below those of the clinically relevant multikinase inhibitors gefitinib and sorafenib, which served as positive controls. A focus was set on the investigation of drug mechanisms in HCT-116 p53-knockout colon cancer cells in order to evaluate the dependence of the test compounds on p53. Colony formation assays as well as experiments with tumor spheroids confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic caspase-3/7 activity and ROS formation, as well as anti-angiogenic properties. Docking calculations with EGFR and VEGFR-2 identified the two 3-aryl-2-(pyrid-3-yl)acrylonitrile derivatives 2a and 2b as potential kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in cancer treatment.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Tirfostinas , Humanos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53 , Tirfostinas/síntese química , Tirfostinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células HCT116
5.
Angiogenesis ; 25(1): 35-45, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905124

RESUMO

Angiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed "coalescent angiogenesis." In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.


Assuntos
Membrana Corioalantoide , Neovascularização Fisiológica , Animais , Capilares , Morfogênese , Neovascularização Patológica
6.
Microvasc Res ; 139: 104259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624307

RESUMO

Blood flow pulsatility is an important determinant of macro- and microvascular physiology. Pulsatility is damped largely in the microcirculation, but the characteristics of this damping and the factors that regulate it have not been fully elucidated yet. Applying computational approaches to real microvascular network geometry, we examined the pattern of pulsatility damping and the role of potential damping factors, including pulse frequency, vascular viscous resistance, vascular compliance, viscoelastic behavior of the vessel wall, and wave propagation and reflection. To this end, three full rat mesenteric vascular networks were reconstructed from intravital microscopic recordings, a one-dimensional (1D) model was used to reproduce pulsatile properties within the network, and potential damping factors were examined by sensitivity analysis. Results demonstrate that blood flow pulsatility is predominantly damped at the arteriolar side and remains at a low level at the venular side. Damping was sensitive to pulse frequency, vascular viscous resistance and vascular compliance, whereas viscoelasticity of the vessel wall or wave propagation and reflection contributed little to pulsatility damping. The present results contribute to our understanding of mechanical forces and their regulation in the microcirculation.


Assuntos
Arteríolas/fisiologia , Mesentério/irrigação sanguínea , Microcirculação , Modelos Cardiovasculares , Fluxo Pulsátil , Circulação Esplâncnica , Vênulas/fisiologia , Animais , Microscopia Intravital , Masculino , Ratos Wistar , Estresse Mecânico , Fatores de Tempo , Resistência Vascular
7.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445133

RESUMO

New chimeric inhibitors targeting the epidermal growth factor (EGFR) and histone deacetylases (HDACs) were synthesized and tested for antineoplastic efficiency in solid cancer (prostate and hepatocellular carcinoma) and leukemia/lymphoma cell models. The most promising compounds, 3BrQuin-SAHA and 3ClQuin-SAHA, showed strong inhibition of tumor cell growth at one-digit micromolar concentrations with IC50 values similar to or lower than those of clinically established reference compounds SAHA and gefitinib. Target-specific EGFR and HDAC inhibition was demonstrated in cell-free kinase assays and Western blot analyses, while unspecific cytotoxic effects could not be observed in LDH release measurements. Proapoptotic formation of reactive oxygen species and caspase-3 activity induction in PCa and HCC cell lines DU145 and Hep-G2 seem to be further aspects of the modes of action. Antiangiogenic potency was recognized after applying the chimeric inhibitors on strongly vascularized chorioallantoic membranes of fertilized chicken eggs (CAM assay). The novel combination of two drug pharmacophores against the EGFR and HDACs in one single molecule was shown to have pronounced antineoplastic effects on tumor growth in both solid and leukemia/lymphoma cell models. The promising results merit further investigations to further decipher the underlying modes of action of the novel chimeric inhibitors and their suitability for new clinical approaches in tumor treatment.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores ErbB/antagonistas & inibidores , Células Hep G2 , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Linfoma/tratamento farmacológico , Linfoma/metabolismo
8.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668139

RESUMO

New 2-(thien-2-yl)-acrylonitriles with putative kinase inhibitory activity were prepared and tested for their antineoplastic efficacy in hepatoma models. Four out of the 14 derivatives were shown to inhibit hepatoma cell proliferation at (sub-)micromolar concentrations with IC50 values below that of the clinically relevant multikinase inhibitor sorafenib, which served as a reference. Colony formation assays as well as primary in vivo examinations of hepatoma tumors grown on the chorioallantoic membrane of fertilized chicken eggs (CAM assay) confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic capsase-3 activity, while no contribution of unspecific cytotoxic effects was observed in LDH-release measurements. Kinase profiling of cancer relevant protein kinases identified the two 3-aryl-2-(thien-2-yl)acrylonitrile derivatives 1b and 1c as (multi-)kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Additional bioinformatic analysis of the VEGFR-2 binding modes by docking and molecular dynamics calculations supported the experimental findings and indicated that the hydroxy group of 1c might be crucial for its distinct inhibitory potency against VEGFR-2. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in HCC treatment.


Assuntos
Acrilonitrila/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Tiofenos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química
9.
Microcirculation ; 27(1): e12590, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520425

RESUMO

OBJECTIVE: In this study, we examined the impact of gap junction blockade on chick chorioallantoic membrane microvessels. METHODS: Expression of Cx37, Cx40/42, and Cx43 in chick chorioallantoic membrane tissue was studied by PCR, Western blot, and confocal immunofluorescence microscopy. Vessel diameter changes occurring under gap junction blockade with carbenoxolone (175 µmol/L), palmitoleic acid (100 µmol/L), 43 GAP27 (1 mmol/L) were analyzed by intravital microscopy. To analyze vascular tone, chick chorioallantoic membrane vessels were exposed to a vasodilator cocktail consisting of acetylcholine (10 µmol/L), adenosine (100 µmol/L), papaverine (200 µmol/L), and sodium nitroprusside (10 µmol/L). RESULTS: In chick chorioallantoic membrane lysates, Western blot analysis revealed the expression of Cx40 and Cx43. Immunofluorescence in intact chick chorioallantoic membrane vasculature showed only Cx43, limited to arterial vessel walls. Upon gap junction blockade (3 hours) arterial and venous diameters decreased to 0.50 ± 0.03 and 0.36 ± 0.06 (carbenoxolone), 0.72 ± 0.08 and 0.63 ± 0.15 (palmitoleic acid) and 0.77 ± 0.004 and 0.58 ± 0.05 (GAP27), relative to initial values. Initially, diameter decrease was dominated by increasing vascular tone. After 6 hours, however, vessel tone was reduced, suggesting structural network remodeling. CONCLUSIONS: Our findings suggest a major role for connexins in mediating acute and chronic diameter changes in developing vascular networks.


Assuntos
Proteínas Aviárias/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Microvasos/metabolismo , Animais , Embrião de Galinha
10.
Microcirculation ; 24(4)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28075525

RESUMO

OBJECTIVE: After arteriolar occlusion, collaterals enlarge and initially elevated WSS normalizes. While most previous studies focused on endpoints of such adaptive changes in larger collaterals, the present investigation aimed to continuously determine the relation between WSS and diameter in microvascular collaterals during adaptive reactions. METHODS: In Hamburger-Hamilton stage 40 CAMs, junction points between arteriolar segments were identified and the third upstream segment on one side was occluded. Intravital microscopy recordings were taken for 24 hours post-occlusion. Segment diameter and blood velocity were measured: WSS and capillary density were calculated. RESULTS: After occlusion, vascular diameters exhibited an immediate decrease, then increased with a time constant of 2.5 ± 0.8 hours and reached a plateau of up to 60% above baseline after about 7 hours. Vascular tone showed no significant change. WSS exhibited an immediate increase post-occlusion and linearly returned to baseline after about 12 hours. Local WSS change and diameter change rate showed similar patterns during the initial but not the later phase of post-occlusive adaptation. CONCLUSIONS: CAM collaterals undergo fast structural remodeling within 24 hours post-occlusion. This remodeling might be driven by local WSS and by other regulators within the vascular network.


Assuntos
Arteriopatias Oclusivas/fisiopatologia , Arteríolas/fisiopatologia , Membrana Corioalantoide/irrigação sanguínea , Circulação Colateral , Remodelação Vascular , Doença Aguda , Animais , Embrião de Galinha , Microscopia Intravital , Estresse Mecânico , Fatores de Tempo
11.
Am J Physiol Heart Circ Physiol ; 311(4): H913-H926, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402670

RESUMO

The chick chorioallantoic membrane (CAM) is extensively used as an in vivo model. Here, structure and hemodynamics of CAM vessel trees were analyzed and compared with predictions of Murray's law. CAM microvascular networks of Hamburger-Hamilton stage 40 chick embryos were scanned by videomicroscopy. Three networks with ∼3,800, 580, and 480 segments were digitally reconstructed, neglecting the capillary mesh. Vessel diameters (D) and segment lengths were measured, and generation numbers and junctional exponents at bifurcations were derived. In selected vessels, flow velocities (v) and hematocrit were measured. Hemodynamic simulations, incorporating the branching of capillaries from preterminal vessels, were used to estimate v, volume flow, shear stress (τ), and pressure for all segments of the largest network. For individual arteriovenous flow pathways, terminal arterial and venous generation numbers are negatively correlated, leading to low variability of total topological and morphological pathway lengths. Arteriolar velocity is proportional to diameter (v∝D1.03 measured, v∝D0.93 modeling), giving nearly uniform τ levels (τ∝D0.05). Venular trees exhibit slightly higher exponents (v∝D1.3, τ∝D0.38). Junctional exponents at divergent and convergent bifurcations were 2.05 ± 1.13 and 1.97 ± 0.95 (mean ± SD) in contrast to the value 3 predicted by Murray's law. In accordance with Murray's law, τ levels are (nearly) maintained in CAM arterial (venular) trees, suggesting vascular adaptation to shear stress. Arterial and venous trees show an interdigitating arrangement providing homogeneous flow pathway properties and have preterminal capillary branches. These properties may facilitate efficient oxygen exchange in the CAM during rapid embryonic growth.


Assuntos
Artérias/fisiologia , Arteríolas/fisiologia , Capilares/fisiologia , Membrana Corioalantoide/irrigação sanguínea , Hemodinâmica , Animais , Artérias/anatomia & histologia , Arteríolas/anatomia & histologia , Velocidade do Fluxo Sanguíneo , Capilares/anatomia & histologia , Embrião de Galinha , Simulação por Computador , Hematócrito , Modelos Cardiovasculares , Estresse Mecânico
12.
Microcirculation ; 23(7): 512-522, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27510444

RESUMO

OBJECTIVE: The microvasculature of the CAM in the developing chick embryo is characterized by interdigitating arteriolar and venular trees, connected at multiple points along their lengths to a mesh-like capillary plexus. Theoretical modeling techniques were employed to investigate the resulting hemodynamic characteristics of the CAM. METHODS: Based on previously obtained anatomical data, a model was developed in which the capillary plexus was treated as a porous medium. Supply of blood from arterioles and drainage into venules were represented by distributions of flow sources and sinks. Predicted flow velocities were compared with measurements in arterioles and venules obtained via video microscopy. RESULTS: If it was assumed that blood flowed into and out of the capillary plexus only at the ends of terminal arterioles and venules, the predicted velocities increased with decreasing diameter in vessels below 50 µm in diameter, contrary to the observations. Distributing sources/sinks along arterioles/venules led to velocities consistent with the data. CONCLUSIONS: These results imply that connections to the capillary plexus distributed along the arterioles and venules strongly affect the hemodynamic characteristics of the CAM. The theoretical model provides a basis for quantitative simulations of structural adaptation in CAM networks in response to hemodynamic stimuli.


Assuntos
Membrana Corioalantoide/irrigação sanguínea , Hemodinâmica/fisiologia , Microvasos/fisiologia , Adaptação Fisiológica , Animais , Arteríolas/ultraestrutura , Embrião de Galinha , Galinhas , Microcirculação , Microscopia de Vídeo , Microvasos/ultraestrutura , Modelos Biológicos , Vênulas/ultraestrutura
13.
Anticancer Drugs ; 27(2): 89-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26479145

RESUMO

Germ cell tumors (GCTs) are the most frequent malignancy in male patients between 15 and 45 years of age. Cisplatin-based chemotherapy shows excellent cure rates, but patients with cisplatin-resistant GCTs have a poor prognosis. Nintedanib (BIBF 1120, Vargatef) inhibits the receptor classes vascular endothelial growth factor receptor, platelet derived growth factor receptor, and fibroblast growth factor receptor, and has shown activity against many tumors, as well as in idiopathic lung fibrosis and bleomycin-induced lung injury. Here, we investigated the antineoplastic and antiangiogenic properties of nintedanib in cisplatin-resistant and cisplatin-sensitive GCT cells, both alone and in combination with classical cytotoxic agents such as cisplatin, etoposide, and bleomycin. The half-maximal inhibitory concentration (IC50) of nintedanib was 4.5 ± 0.43 µmol/l, 3.1 ± 0.45 µmol/l, and 3.6 ± 0.33 µmol/l in cisplatin-sensitive NTERA2, 2102Ep, and NCCIT cells, whereas the IC50 doses of the cisplatin-resistant counterparts were 6.6 ± 0.37 µmol/l (NTERA2-R), 4.5 ± 0.83 µmol/l (2102Ep-R), and 6.1 ± 0.41 µmol/l (NCCIT-R), respectively. Single treatment with nintedanib induced apoptosis and resulted in a sustained reduction in the capacity of colony formation in both cisplatin-sensitive and cisplatin-resistant GCT cells. Cell cycle analysis showed that nintedanib induced a strong G0/G1-phase arrest in all investigated cell lines. Combination treatment with cisplatin did not result in additive, synergistic, or antagonistic effects. The in-vivo activity was studied using the chorioallantoic membrane assay and indicated the antiangiogenic potency of nintedanib with markedly reduced microvessel density. Topical treatment of inoculated tumor plaques resulted in a significant reduction of the tumor size. This indicates that nintedanib might be a promising substance in the treatment of GCT.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Neoplasias Embrionárias de Células Germinativas/patologia , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bleomicina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Cisplatino/farmacologia , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/metabolismo
14.
Invest New Drugs ; 30(4): 1426-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21748298

RESUMO

Quinolines and acrylates are chemical compounds which were previously described as potential antitumor agents. In this study, a series of seven new quinolinyl acrylate derivatives were synthesized and evaluated against human prostate cancer cells PC-3 and LNCaP in vitro and in vivo. The most effective compound (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4 hydroxyphenyl) acrylate reduced the viability in both cell lines in a time- and dose-dependent manner. Inhibitory effects were also observed on the adhesion, migration, and invasion of the prostate cancer cells as well as on the neoangiogenesis, clonogenic and MMP-9 activity. The effect in vivo was studied in PC-3 xenografts in nude mice. The results were concordant with the in vitro effects and showed decreased tumor growth in treated animals compared to controls. The study suggests the multi-target efficacy of the quinolinyl derivate against human prostate cancer cells and supports its potential therapeutic usefulness.


Assuntos
Acrilatos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Quinolinas/uso terapêutico , Acrilatos/síntese química , Acrilatos/química , Acrilatos/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Células Clonais , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neovascularização Fisiológica/efeitos dos fármacos , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 13(9): 11530-11542, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109869

RESUMO

Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa.


Assuntos
Antineoplásicos/farmacologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Niacinamida/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe
16.
Cancer Drug Resist ; 5(1): 64-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582529

RESUMO

Epigenetic mechanisms play an important role in the development and persistence of cancer, and histone deacetylase (HDAC) inhibitors are promising anticancer drugs targeting epigenetic modes. Efficient anticancer drugs for the treatment of castration-resistant prostate cancer (CRPC) are sought, and approved HDAC inhibitors have shown promising results on the one hand and severe drawbacks on the other hand. Hence, ways to break the drug resistance mechanisms of existing HDAC inhibitors as well as the design of new promising HDAC inhibitors which can overcome the disadvantages of the classic HDAC inhibitors are of great importance. In this work, HDAC inhibitors with the potential to become a mainstay for the treatment of CRPC in the future as well as suitable combination treatments of HDAC inhibitors with other anticancer drugs leading to considerable synergistic effects in treated CRPCs are discussed.

17.
J Pers Med ; 12(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35629160

RESUMO

New medical treatments are urgently needed for advanced hepatocellular carcinoma (HCC). Recently, we showed the anticancer effects of novel thiophene-based kinase inhibitors. In this study, we further characterized the antineoplastic effects and modes of action of the two most promising inhibitors, Thio-Iva and Thio-Dam, and compared their effects with the clinically relevant multi-kinase inhibitor, sorafenib, in HCC cells. Crystal violet staining and real-time cell growth monitoring showed pronounced antiproliferative effects in Huh-7 and SNU-449 cells with IC50 values in the (sub-)micromolar range. Long-term incubation experiments revealed the reduced clonogenicity of Thio-Iva and Thio-Dam-treated HCC cells. LDH-release tests excluded cytotoxicity as an unspecific mode of action of the inhibitors, while flow cytometry analysis revealed a dose-dependent and pronounced G2/M phase cell cycle arrest and cyclin B1 suppression. Additionally, mitochondria-driven apoptosis was observed through the cytosolic increase of reactive oxygen species, a concomitant PARP cleavage, and caspase-3 induction. Both compounds were found to effectively inhibit the capillary tube formation of endothelial EA.hy926 cells in vitro, pointing towards additional antiangiogenic effects. Antiangiogenic and antineoplastic effects were confirmed in vivo by CAM assays. In summary, the thienyl-acrylonitrile derivatives, Thio-Iva and Thio-Dam, exert significant antineoplastic and antiangiogenic effects in HCC cells.

18.
Int J Oncol ; 60(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35485292

RESUMO

Broxbam, also known as N-hydroxy-4-{1-methoxy-4-[4'-(3'-bromo-4',5'-dimethoxyphenyl)-oxazol-5'-yl]-2-phenoxy} butanamide, is a novel chimeric inhibitor that contains two distinct pharmacophores in its molecular structure. It has been previously demonstrated to inhibit the activity of histone deacetylases (HDAC) and tubulin polymerisation, two critical components required for cancer growth and survival. In the present study, the potential suitability of broxbam for the treatment of liver cancer was investigated. The effects of broxbam on cell proliferation and apoptosis, in addition to the underlying molecular mechanism of action, were first investigated in primary liver cancer cell lines Huh7, HepG2, TFK1 and EGI1. Real-time proliferation measurements made using the iCELLigence system and viable cell number counting following crystal violet staining) revealed that broxbam time- and dose-dependently reduced the proliferation of liver cancer cell lines with IC50 values <1 µM. In addition, a significant inhibition of the growth of hepatoblastoma microtumours on the chorioallantoic membranes (CAM) of fertilised chicken eggs by broxbam was observed according to results from the CAM assay, suggesting antineoplastic potency in vivo. Broxbam also exerted apoptotic effects through p53- and mitochondria-driven caspase-3 activation in Huh7 and HepG2 cells according to data from western blotting (p53 and phosphorylated p53), mitochondrial membrane potential measurements (JC-1 assay) and fluorometric capsase-3 measurements. Notably, no contribution of unspecific cytotoxic effects mediated by broxbam were observed from LDH-release measurements. HDAC1, -2, -4 and -6 expression was measured by western blotting and the HDAC inhibitory potency of broxbam was next evaluated using subtype-specific HDAC enzymatic assays, which revealed a largely pan-HDAC inhibitory activity with the most potent inhibition observed on HDAC6. Silencing HDAC6 expression in Huh7 cells led to a drop in the expression of the proliferation markers Ki-67 and E2F3, suggesting that HDAC6 inhibition by broxbam may serve a predominant role in their antiproliferative effects on liver cancer cells. Immunofluorescence staining of cytoskeletal proteins (α-tubulin & actin) of broxbam-treated HepG2 cells revealed a pronounced inhibition of tubulin polymerisation, which was accompanied by reduced cell migration as determined by wound healing scratch assays. Finally, data from zebrafish angiogenesis assays revealed marked antiangiogenic effects of broxbam in vivo, as shown by the suppression of subintestinal vein growth in zebrafish embryos. To conclude, the pleiotropic anticancer activities of this novel chimeric HDAC- and tubulin inhibitor broxbam suggest that this compound is a promising candidate for liver cancer treatment, which warrants further pre-clinical and clinical evaluation.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Proteína Supressora de Tumor p53 , Peixe-Zebra/metabolismo
19.
Pharm Res ; 28(4): 907-19, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21184149

RESUMO

PURPOSE: The objective of this study was to investigate the effect of new 4-maleamic acid and 4-maleamide peptidyl chalcone derivatives against human prostate cancer in vitro and in vivo. METHODS: From a series of 21 chalcones, the effects of the three best inhibitors of PC-3 and LNCaP cell viability on growth, including cell cycle changes, adhesion, migration, and cell invasion, as well as their ability to inhibit angiogenesis, clonogenic activity, and matrix metalloproteinases MMP-2 and MMP-9, were tested. The effects in vivo were studied in PC-3 and LNCaP xenografts. RESULTS: Three of the examined chalcones reduced cell viability in both cell lines in a strong dose- and time-dependent manner. An inhibition of the cell cycle progress was observed. These changes were accompanied with the inhibition of cell adhesion, migration, and invasion as well as with reduced neovascularization in chick embryos, tumor colony formation, and MMP-9 activity. The in vivo results demonstrated the strong activity of these structures as inhibitors of tumor development in nude mice compared to non-treated animals. CONCLUSION: The results suggest the multitarget efficacy of 4-maleamic acid and 4-maleamide peptidyl chalcones against human prostate cancer cells and emphasize the potential therapeutic relevance of these compounds.


Assuntos
Amidas/química , Antineoplásicos/uso terapêutico , Chalconas/uso terapêutico , Maleatos/química , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959719

RESUMO

The development of new anticancer drugs is necessary in order deal with the disease and with the drawbacks of currently applied drugs. Epigenetic dysregulations are a central hallmark of cancerogenesis and histone deacetylases (HDACs) emerged as promising anticancer targets. HDAC inhibitors are promising epigenetic anticancer drugs and new HDAC inhibitors are sought for in order to obtain potent drug candidates. The new HDAC inhibitor SF5-SAHA was synthesized and analyzed for its anticancer properties. The new compound SF5-SAHA showed strong inhibition of tumor cell growth with IC50 values similar to or lower than that of the clinically applied reference compound vorinostat/SAHA (suberoylanilide hydroxamic acid). Target specific HDAC inhibition was demonstrated by Western blot analyses. Unspecific cytotoxic effects were not observed in LDH-release measurements. Pro-apoptotic formation of reactive oxygen species (ROS) and caspase-3 activity induction in prostate carcinoma and hepatocellular carcinoma cell lines DU145 and Hep-G2 seem to be further aspects of the mode of action. Antiangiogenic activity of SF5-SAHA was observed on chorioallantoic membranes of fertilized chicken eggs (CAM assay). The presence of the pentafluorothio-substituent of SF5-SAHA increased the antiproliferative effects in both solid tumor and leukemia/lymphoma cell models when compared with its parent compound vorinostat. Based on this preliminary study, SF5-SAHA has the prerequisites to be further developed as a new HDAC inhibitory anticancer drug candidate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa