Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(4): 118, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853439

RESUMO

TatD is the subunit of the twin-arginine translocation (Tat) pathway. Members of TatD family are multifunctional, conserved and widely presented proteins in most prokaryotes. It has been reported that Tat can affect bacterial motility in some bacteria. This study was conducted to determine the contribution of the TatD protein (herein named LmTatD) to the regulation of flagella in Listeria monocytogenes. We constructed an LmTatD gene mutant in L. monocytogenes strain 10403 s and evaluated its biological characteristics. The results showed no difference in growth or morphology between the wild-type strain and the ΔLmTatD mutant. Intriguingly, the ΔLmTatD mutant showed impaired swimming motility and flagella structure but increased biofilm formation. Comparative proteomic analysis using tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC‒MS/MS) was performed to determine differentially expressed proteins (DEPs). The results revealed that 134 proteins out of 2228 total proteins identified were differentially expressed, among which 18 proteins were upregulated and 116 proteins were downregulated in the ΔLmTatD mutant. Analysis of DEPs indicated that the reduced expression levels of the proteins related to flagellar assembly in the ΔLmTatD mutant correlate with its characteristics. Compared to the wild-type strain, the most downregulated proteins in the ΔLmTatD mutant included FlaA, FliD, FliR, FlgD, FlgL, and FlgG. Collectively, our data suggest that although LmTatD is not required for growth in L. monocytogenes, loss of LmTatD reduces flagellar production and motility by regulating flagellar assembly-related protein expression.


Assuntos
Listeria monocytogenes , Cromatografia Líquida , Listeria monocytogenes/genética , Proteômica , Espectrometria de Massas em Tandem
2.
Arch Microbiol ; 205(1): 20, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482126

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes severe gastroenteritis. The 5'-nucleotidases of pathogens can dephosphorylate adenosine phosphates, boost adenosine levels and suppress the pro-inflammatory immune response. In our previous study, an extracellular nuclease, 5'-nucleotidase, was identified in the extracellular proteins of S. Typhimurium. However, the nuclease activity and the function of the 5'-nucleotidase of S. Typhimurium have not been explored. In the present study, deletion of the 5'-nucleotidase gene is dispensable for S. Typhimurium growth, even under environmental stress. Fluorescence microscopy revealed that the 5'-nucleotidase mutant induced more macrophage extracellular traps (METs) than the wild type did. Furthermore, recombinant 5'-nucleotidase protein (r5Nuc) could degrade λDNA, and the nuclease activity of r5Nuc was optimum at 37 °C and pH 6.0-7.0. The Mg2+ enhanced the nuclease activity of r5Nuc, whereas Zn2+ inhibited it. Meanwhile, deletion of the 5'-nucleotidase gene increased the bactericidal activity of METs, and r5Nuc could degrade METs and inhibit the bactericidal activity of METs. In conclusion, S. Typhimurium growth was independent of 5'-nucleotidase, but the nuclease activity of 5'-nucleotidase assisted S. Typhimurium to evade macrophage-mediated extracellular killing through degrading METs.


Assuntos
Armadilhas Extracelulares , Salmonella typhimurium , Salmonella typhimurium/genética , Macrófagos
3.
Pharmaceutics ; 15(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37765247

RESUMO

The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa