RESUMO
Exposure to fine particulate matter (PM2.5) has significant effects on human skin health, mainly disrupting skin homeostasis and accelerating aging. To date, the effects of PM2.5 on psoriasis (PSO) have not been elucidated. An ambient particulate matter exposed and well characterized imiquimod (IMQ)-induced psoriasis mouse model was established. Thirty male C57BL/6 mice aged 8 weeks were randomly divided into three groups: filtered air (FA) group (Control group), PSO+ FA group and PSO + PM2.5 group. A KRT17 knockdown (KRT17-KD) mouse model was simultaneously established by subcutaneously injecting KRT17-KD lentivirus. Forty male C57BL/6 mice were randomly divided into four groups: PSO + FA + KRT17-RNAi negative control lentivirus (KRT17-NC) group, PSO+ FA+ KRT17-KD group, PSO + PM2.5 + KRT17-NC group and PSO + PM2.5 + KRT17-KD group. PM2.5 exposure continued for 8 weeks. Psoriasis was induced by topically applying IMQ on the dorsal skin of the mice for 6 days during week 8. Morphometric and histological analyses were performed to investigate the changes in psoriatic lesions. Differentially expressed genes and enriched pathways were explored using bioinformatics analysis and showed that KRT17 gene and the vascular endothelial growth factor receptor signaling pathway were associated with psoriasis. HaCaT cells were stimulated with interleukin-17A and infected with KRT17-KD lentivirus to establish an in vitro KRT17 knockdown psoriasis cell model. Notably, PM2.5 exposure increased the expression of KRT17 protein and activated AKT/mTOR/HIF-1α signaling pathway in vivo. Moreover, specific agonist of AKT (740Y-P) reversed the decreased neovascularization induced by KRT17 knockdown through AKT/mTOR/HIF-1α signaling pathway in vitro. Consequently, PM2.5 exposure could promote the development and progression of psoriasis through KRT17-dependent activation of AKT/mTOR/HIF-1α signaling pathway.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Psoríase , Animais , Masculino , Camundongos , Imiquimode/toxicidade , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/induzido quimicamente , Psoríase/genética , Psoríase/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio VascularRESUMO
BACKGROUND: The gastric conduit is the most commonly used replacement organ for reconstruction after minimally invasive McKeown esophagectomy. Although the optimal route of gastric conduit remains controversial, the posterior mediastinal route is physiologically preferable but is not without disadvantages. Here, we report the safety and efficacy of a method of gastric conduit reconstruction via the anterior of the pulmonary hilum route. METHODS: We have used the anterior of the pulmonary hilum route since 2021. This procedure involves pulling the gastric conduit up through a substernal tunnel between the right thoracic cavity and the abdominal cavity and passing it into the neck via the anterior of the pulmonary hilum route. In this retrospective study, we compared the clinical outcomes between 20 patients who underwent this procedure and 20 patients who underwent the posterior mediastinal route from 2021 to 2022. RESULTS: No mortality was reported in either group. No significant differences were observed between the two groups in duration of surgery, blood loss, incidence of postoperative complications, and postoperative hospital stay. As a result of the anterior of the pulmonary hilum route, the primary tumor bed and lymph node drainage area were effectively bypassed, which facilitates postoperative adjuvant radiotherapy or chemoradiotherapy. The distance of the gastric conduit accompanying the airway was significantly shorter in the anterior of the pulmonary hilum route group. CONCLUSIONS: Our method is considered to be a safe and useful technique for the reconstruction of gastric conduit.
Assuntos
Neoplasias Esofágicas , Esofagectomia , Humanos , Esofagectomia/métodos , Estudos Retrospectivos , Estômago/cirurgia , Complicações Pós-Operatórias/etiologia , Mediastino/cirurgia , Neoplasias Esofágicas/cirurgiaRESUMO
Titanium dioxide nanoparticles (TiO2 NPs) are widely used to additives in cosmetics, pharmaceuticals, paints and foods. Recent studies have demonstrated that TiO2 NPs increased the risk of cancer and the mechanism might relate with oxidative stress. Grape seed procyanidin extract (GSPE) is a natural compound which has been demonstrated to possess a wide array of pharmacological and biochemical actions, including anti-inflammatory, anti-carcinogenic, and antioxidant properties. Our data show that GSPE prevents the changes of histopathology and biomarkers in heart, liver and kidney that occur in mice exposed to TiO2 NPs. After pretreatment with GSPE, the DNA damage, reactive oxygen species (ROS) generation and malondialdehyde (MDA) content in mice exposed to TiO2 NPs had statistically significant decreases in dose dependent manners. GSPE increased the expression of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), NAD(P)H dehydrogenase[quinine] 1(NQO1), heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC). We conclude that grape seed procyanidin extract prevents the majority of tissue and molecular damage resulting from nanoparticle treatment. The protective effect of GSPE may be due to its strong antioxidative activities which related with the activated Nrf2 and its down-regulated genes including NQO1, HO-1 and GCLC.