Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Exp Physiol ; 109(7): 1199-1210, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812118

RESUMO

Diabetic nephropathy (DN) is a common complication of diabetes mellitus (DM), and cell death plays an important role. Ferroptosis is a recently discovered type of iron-dependent cell death and one that is different from other kinds of cell death including apoptosis and necrosis. However, ferroptosis has not been described in the context of DN. This study explored the role of ferroptosis in DN pathophysiology and aimed to confirm the efficacy of the ferroptosis inhibitor SRS 16-86 on DN. Streptozotocin injection was used to establish the DM and DN animal models. To investigate the presence or occurrence of ferroptosis in DN, we assessed the concentrations of iron, reactive oxygen species and specific markers associated with ferroptosis in a rat model of DN. Additionally, we performed haematoxylin-eosin staining, blood biochemistry, urine biochemistry and kidney function analysis to evaluate the efficacy of the ferroptosis inhibitor SRS 16-86 in ameliorating DN. We found that SRS 16-86 could improve the recovery of renal function after DN by upregulating glutathione peroxidase 4, glutathione and system xc -light chain and by downregulating the lipid peroxidation markers and 4-hydroxynonenal. SRS 16-86 treatment could improve renal organization after DN. The inflammatory cytokines interleukin 1ß and tumour necrosis factor α and intercellular adhesion molecule 1 were significantly decreased following SRS 16-86 treatment after DN. The results indicate that there is a strong connection between ferroptosis and the pathological mechanism of DN. The efficacy of the ferroptosis inhibitor SRS 16-86 in DN repair supports its use as a new therapeutic treatment for DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Ratos Sprague-Dawley , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Masculino , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Ferro/metabolismo
2.
Diabetologia ; 66(11): 2139-2153, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581618

RESUMO

AIMS/HYPOTHESIS: An increasing body of evidence has shown that the catabolism of branched-chain amino acids (BCAAs; leucine, isoleucine and valine) is impaired in obese animals and humans, contributing to the development of insulin resistance and type 2 diabetes. Promoting BCAA catabolism benefits glycaemic control. It remains unclear whether BCAA catabolism plays a role in the therapeutic efficacy of currently used glucose-lowering drugs such as metformin. METHODS: Mice were treated with vehicle or metformin (250 mg/kg per day) for more than 4 weeks to investigate the effects of metformin in vivo. In vitro, primary mouse hepatocytes and HepG2 cells were treated with 2 mmol/l metformin. The therapeutic efficacy of metformin in the treatment of type 2 diabetes was assessed in genetically obese (ob/ob) mice and high-fat-diet-induced obese (DIO) mice. Enhancing BCAA catabolism was achieved with a pharmacological agent, 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2). The ob/ob mice were treated with a low-BCAA diet or intermittent protein restriction (IPR) to reduce BCAA nutritional intake. RESULTS: Metformin unexpectedly inhibited the catabolism of BCAAs in obese mice, resulting in an elevation of BCAA abundance. AMP-activated protein kinase (AMPK) mediated the impact of metformin on BCAA catabolism in hepatocytes. Importantly, enhancing BCAA catabolism via a pharmacological agent BT2 significantly potentiated the glucose-lowering effect of metformin while decreasing circulating BCAA levels in ob/ob and DIO mice. Similar outcomes were achieved by a nutritional approach of reducing BCAA intake. IPR also effectively reduced the circulating BCAA abundance and enhanced metformin's glucose-lowering effect in ob/ob mice. BT2 and IPR treatments reduced the expression of fructose-1,6-bisphosphatase 1, a rate-limiting enzyme in gluconeogenesis, in the kidney but not liver, indicating the involvement of renal gluconeogenesis. CONCLUSIONS/INTERPRETATION: Metformin self-limits its therapeutic efficacy in the treatment of type 2 diabetes by triggering the suppression of BCAA catabolism. Enhancing BCAA catabolism pharmacologically or reducing BCAA intake nutritionally potentiates the glucose-lowering effect of metformin. These data highlight the nutritional impact of protein on metformin's therapeutic efficacy and provide new strategies targeting BCAA metabolism to improve metformin's effects on the clinical outcome in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Dieta Hiperlipídica , Glucose
3.
Biochem Biophys Res Commun ; 610: 170-175, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462099

RESUMO

Rac1 plays an important role in contraction-stimulated muscle glucose uptake, but the mechanism is not fully elucidated. We previously identified Rac1-dependent activation of Akt played a partial role in contraction-stimulated GLUT4 translocation to the cell surface of C2C12 myotubes. Recognizing that contraction activates CaMKII in muscle and CaMKII is known to regulate Rac1 activity in other systems, here we investigated the relationship between CaMKII, Akt and contraction-stimulated glucose uptake. Expression of a constitutively-active mutant of CaMKIIδ stimulated Akt phosphorylation that was inhibited by Rac1 inhibitor II. C2C12 myotubes were contracted by electrical pulse stimulation (EPS). We observed the CaMKII inhibitor, KN-93 and CaMKIIδ siRNA-mediated knockdown, reduced EPS-induced Akt phosphorylation in C2C12 myotubes. ITX3, an inhibitor of the Rac-GTPase Kalirin and Kalirin siRNA-mediated knockdown reduced EPS-stimulated Akt phosphorylation in myotubes. In addition, the Akt inhibitor MK2206 partly reduced EPS-stimulated glucose uptake without simultaneously affecting CaMKII phosphorylation and Kalirin protein abundance. Our findings demonstrate EPS leads to Akt activation through a CaMKII-Kalirin-Rac1 signaling pathway and partly regulates contraction-stimulated glucose uptake in muscle cells.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Proto-Oncogênicas c-akt , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
FASEB J ; 35(2): e21210, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33225507

RESUMO

Contraction-stimulated glucose uptake in skeletal muscle requires Rac1, but the molecular mechanism of its activation is not fully understood. Treadmill running was applied to induce C57BL/6 mouse hind limb skeletal muscle contraction in vivo and electrical pulse stimulation contracted C2C12 myotube cultures in vitro. The protein levels or activities of AMPK or the Rac1-specific GEF, Tiam1, were manipulated by activators, inhibitors, siRNA-mediated knockdown, and adenovirus-mediated expression. Activated Rac1 was detected by a pull-down assay and immunoblotting. Glucose uptake was measured using the 2-NBD-glucose fluorescent analog. Electrical pulse stimulated contraction or treadmill exercise upregulated the expression of Tiam1 in skeletal muscle in an AMPK-dependent manner. Axin1 siRNA-mediated knockdown diminished AMPK activation and upregulation of Tiam1 protein expression by contraction. Tiam1 siRNA-mediated knockdown diminished contraction-induced Rac1 activation, GLUT4 translocation, and glucose uptake. Contraction increased Tiam1 gene expression and serine phosphorylation of Tiam1 protein via AMPK. These findings suggest Tiam1 is part of an AMPK-Tiam1-Rac1 signaling pathway that mediates contraction-stimulated glucose uptake in skeletal muscle cells and tissue.


Assuntos
Glucose/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Neuropeptídeos/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
5.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1289-1300, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36148950

RESUMO

Neuronal regeneration and functional recovery are severely compromised following traumatic brain injury (TBI). Treatment options, including cell transplantation and drug therapy, have been shown to benefit TBI, although the underlying mechanisms remain elusive. In this study, neural stem cells (NSCs) are transplanted into TBI-challenged mice, together with olfactory ensheathing cells (OECs) or followed by valproic acid (VPA) treatment. Both OEC grafting and VPA treatment facilitate the differentiation of NSCs into neurons (including endogenous and exogenous neurons) and significantly attenuate neurological functional defects in TBI mice. Combination of NSCs with OECs or VPA administration leads to overt improvement in axonal regeneration, synaptogenesis, and synaptic plasticity in the cerebral cortex in TBI-challenged mice, as shown by retrograde corticospinal tract tracing, electron microscopy, growth-associated protein 43 (GAP43), and synaptophysin (SYN) analyses. However, these beneficial effects of VPA are reversed by local delivery of N-methyl-D-aspartate (NMDA) into tissues surrounding the injury epicenter in the cerebral cortex, accompanied by a pronounced drop in axons and synapses in the brain. Our findings reveal that increased axonal regeneration and synaptogenesis evoked by cell grafting and VPA fosters neural repair in a murine model of TBI. Moreover, VPA-induced neuroprotective roles are antagonized by exogenous NMDA administration and its concomitant decrease in the number of neurons of local brain, indicating that increased neurons induced by VPA treatment mediate axonal regeneration and synaptogenesis in mice after TBI operation. Collectively, this study provides new insights into NSC transplantation therapy for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Camundongos , Animais , N-Metilaspartato , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Neurônios , Axônios/fisiologia , Ácido Valproico/farmacologia
6.
Hemoglobin ; 46(3): 180-183, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35603587

RESUMO

We here report a novel case of Hb Headington [ß72(E16)Ser→Arg, HBB: c.217A>C, p.Ser73Arg], in a 68-year-old woman with type 2 diabetes mellitus (T2DM). Glycosylated hemoglobin (Hb) was measured by capillary electrophoresis (CE). The spectrum showed abnormal peaks between the A0 and A2 peaks. DNA sequencing demonstrated a mutation on the HBB gene, which predicted a substitution of serine to arginine at position 73 in the ß-globin chain. Moreover, this amino acid substitution occurs at the same position as Hb Headington [ß72(E16)Ser→Arg, HBB: c.219T>A, p.Ser73Arg], which showed increased oxygen affinity.


Assuntos
Diabetes Mellitus Tipo 2 , Hemoglobinas Anormais , Idoso , Arginina/genética , DNA , Diabetes Mellitus Tipo 2/genética , Feminino , Hemoglobinas Glicadas/análise , Hemoglobinas Anormais/análise , Humanos , Mutação , Oxigênio , Serina/genética , Globinas beta/metabolismo
7.
Am J Physiol Endocrinol Metab ; 318(3): E330-E342, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846370

RESUMO

Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Proteína Axina/fisiologia , Glucose/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteína Axina/genética , Linhagem Celular , Estimulação Elétrica , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/genética
8.
Biochem Biophys Res Commun ; 521(3): 625-631, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677795

RESUMO

Adipose tissue hypoxia occurs early in obesity and is associated with increased tissue macrophages and systemic inflammation that impacts muscle insulin responsiveness. We investigated how hypoxia interacted with adipocyte-macrophage crosstalk and inflammatory cytokine release, using co-culture and conditioned media (CM). Murine primary adipocytes from lean or obese mice were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. RAW264.7 macrophages were incubated under normoxic or hypoxic conditions with or without adipocyte conditioned media. Macrophage and adipocyte-macrophage co-culture CM were also collected. We found hypoxia did not elicit direct cytokine release from macrophages. However, adipocyte CM or adipocyte co-culture, synergistically stimulated TNFα and MCP-1 release from macrophages that was not further impacted by hypoxia. Exposure of muscle cells to elevated cytokines led to reduced insulin and muscle stress/inflammatory signaling. We conclude hypoxia or obesity induces release of inflammatory TNFα and MCP-1 from mice primary adipocytes but the two environmental conditions do not synergize to worsen macrophage signal transduction or insulin responsiveness.


Assuntos
Adipócitos/metabolismo , Quimiocina CCL2/metabolismo , Insulina/metabolismo , Macrófagos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/citologia , Animais , Hipóxia Celular , Linhagem Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Resistência à Insulina , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Obesidade/complicações , Obesidade/metabolismo , Células RAW 264.7
9.
Bioorg Chem ; 95: 103501, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864905

RESUMO

In high fat diet-induced obese mice, the flavonoid derivative of tiliroside, Fla-CN, has antihyperglycemic effects, can improve insulin sensitivity, ameliorate metabolic lipid disorders, and benefits certain disorders characterized by insulin resistance. Fla-CN is a novel lead compound to discovery anti-diabetic and anti-obesity drugs. The present study reported the optimization of Fla-CN to obtain a new derivative, 10b, which has improved glucose consumption at the nanomolar level (EC50 = 0.3 nM) in insulin resistant (IR) HepG2 cells. 10b also increased the glycogen content and glucose uptake, and concurrently inhibited gluconeogenesis in HepG2 cells. Western blotting showed that 10b markedly enhanced the phosphorylation of AMPK (AMP-activated protein kinase) and AS160 (protein kinase B substrate of 160 kDa) and reduced the levels of the gluconeogenesis key enzymes PEPCK (phosphoenolpyruvate carboxykinase) and G6P (glucose 6-phosphatase) in HepG2 cells. The potential molecular mechanism of 10b may be activation of the AMPK/AS160 and AMPK/PEPCK/G6P pathways. We concluded that 10b might be a valuable candidate to discover anti-diabetic drugs.


Assuntos
Flavonoides/farmacologia , Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavonoides/síntese química , Flavonoides/química , Gluconeogênese/efeitos dos fármacos , Glucose/biossíntese , Células Hep G2 , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Hepatol Res ; 49(7): 743-757, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30861258

RESUMO

AIM: Glucagon-like peptide-1 receptor agonists (GLP-1Ras) have been reported to prevent non-alcoholic fatty liver disease (NAFLD), but the potential mechanisms are still debated. MicroRNAs (miRNAs) play a prominent role in the field of metabolic disorders, including NAFLD. Our study was designed to further evaluate the effect of GLP-1Ra liraglutide on NAFLD in terms of miRNAs. METHODS: MicroRNA expression was evaluated by clustering analysis of microRNA arrays in high fat diet-fed mice. The luciferase reporter assay was carried out to validate the cross-talk between adipose triglyceride lipase (ATGL) and miR-124a. MicroRNA-124a mimics and inhibitor plasmids were transfected to study the role of miR-124a in palmitate-treated normal human liver cell line (HL-7702). Liraglutide treatment was used to observe the effect of GLP-1Ra on the miR-124a/ATGL pathway. RESULTS: Expression of ATGL decreased and miR-124a expression increased in hepatosteatosis in vivo and in vitro. Mechanistically, miR-124a interacted with the 3'-untranslated region of ATGL mRNA and induced its degradation. MicroRNA-124a overexpression antagonized the effect of liraglutide on NAFLD by inhibiting ATGL expression, whereas miR-124a knockdown led to elevated ATGL and sirtuin 1 (Sirt1) expression, and subsequently decreased lipid accumulation and inflammation in cells. CONCLUSIONS: MicroRNA-124a overexpression contributes to the progression of NAFLD through reduction of ATGL expression, whereas miR-124a knockdown can reverse this trend, suggesting that miR-124a and its downstream target ATGL can be novel therapeutic targets of NAFLD. We reveal a novel mechanism by which liraglutide attenuates NAFLD by the miR-124a/ATGL/Sirt1 pathway.

11.
Am J Physiol Endocrinol Metab ; 314(5): E478-E493, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089333

RESUMO

The signals mobilizing GLUT4 to the plasma membrane in response to muscle contraction are less known than those elicited by insulin. This disparity is undoubtedly due to lack of suitable in vitro models to study skeletal muscle contraction. We generated C2C12 myotubes stably expressing HA-tagged GLUT4 (C2C12-GLUT4 HA) that contract in response to electrical pulse stimulation (EPS) and investigated molecular mechanisms regulating GLUT4 HA. EPS (60 min, 20 V, 1 Hz, 24-ms pulses at 976-ms intervals) elicited a gain in surface GLUT4 HA (GLUT4 translocation) comparably to insulin or 5-amino imidazole-4-carboxamide ribonucleotide (AICAR). A myosin II inhibitor prevented EPS-stimulated myotube contraction and reduced surface GLUT4 by 56%. EPS stimulated AMPK and CaMKII phosphorylation, and EPS-stimulated GLUT4 translocation was reduced in part by small interfering (si)RNA-mediated AMPKα1/α2 knockdown, compound C, siRNA-mediated Ca2+/calmodulin-dependent protein kinase (CaMKII)δ knockdown, or CaMKII inhibitor KN93. Key regulatory residues on the Rab-GAPs AS160 and TBC1D1 were phosphorylated in response to EPS. Stable expression of an activated form of the Rab-GAP AS160 (AS160-4A) diminished EPS- and insulin-stimulated GLUT4 translocation, suggesting regulation of GLUT4 vesicle traffic by Rab GTPases. Knockdown of each Rab8a, Rab13, or Rab14 reduced, in part, GLUT4 translocation induced by EPS, whereas only Rab8a, or Rab14 knockdown reduced the AICAR response. In conclusion, EPS involves Rab8a, Rab13, and Rab14 to elicit GLUT4 translocation but not Rab10; moreover, Rab10 and Rab13 are not engaged by AMPK activation alone. C2C12-GLUT4 HA cultures constitute a valuable in vitro model to investigate molecular mechanisms of contraction-stimulated GLUT4 translocation.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Células Cultivadas , Estimulação Elétrica , Glucose/metabolismo , Camundongos , Contração Muscular/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/genética
12.
Biochem Biophys Res Commun ; 495(2): 1956-1963, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29247648

RESUMO

Exercise/muscle contraction increases cell surface glucose transporter 4 (GLUT4), leading to glucose uptake to regulate blood glucose level. Elevating cytosolic Ca2+ mediates this effect, but the detailed mechanism is not clear yet. We used calcium ionophore ionomycin to raise intracellular cytosolic Ca2+ level to explore the underlying mechanism. We showed that in L6 myoblast muscle cells stably expressing GLUT4myc, ionomycin increased cell surface GLUT4myc levels and the phosphorylation of AS160, TBC1D1. siPKCα and siPKCθ but not siPKCδ and siPKCε inhibited the ionomycin-increased cell surface GLUT4myc level. siPKCα, siPKCθ inhibited the phosphorylation of AS160 and TBC1D1 induced by ionomycin. siPKCα and siPKCθ prevented ionomycin-inhibited endocytosis of GLUT4myc. siPKCθ, but not siPKCα inhibited ionomycin-stimulated exocytosis of GLUT4myc. siRab13 but not siRab8a, siRab10 and siRab14 inhibited the exocytosis of GLUT4myc promoted by ionomycin. In summary, ionomycin-promoted exocytosis of GLUT4 is partly reversed by siPKCθ, whereas ionomycin-inhibited endocytosis of GLUT4 requires both siPKCα and siPKCθ. PKCα and PKCθ contribute to ionomycin-induced phosphorylation of AS160 and TBC1D1. Rab13 is required for ionomycin-regulated GLUT4 exocytosis.


Assuntos
Sinalização do Cálcio/fisiologia , Endocitose/fisiologia , Exocitose/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Mioblastos/fisiologia , Proteína Quinase C/metabolismo , Animais , Cálcio/metabolismo , Ionóforos de Cálcio/administração & dosagem , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ionomicina/administração & dosagem , Mioblastos/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos
13.
Med Sci Monit ; 23: 4644-4649, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953854

RESUMO

BACKGROUND Initial diagnosis of carcinoma of the urinary bladder remains challenging. N-Myc downstream-regulated gene 2 (NDRG2) has been reported to be closely correlated with cell differentiation and proliferation in various cancers. However, its clinical significance in diagnosis of bladder cancer remains unclear. The purpose of this study was to detect the expression of NDRG2 and investigate its diagnostic value in bladder cancer. MATERIAL AND METHODS We recruited 127 patients with bladder cancer and 97 healthy controls. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting analysis were conducted to measure the NDRG2 expression levels in urine of patients with bladder cancer, bladder cancer cell lines, and healthy controls. The correlations between NDRG2 expression and clinicopathological characteristics were analyzed by chi-square test, and the diagnostic value of NDRG2 was estimated by establishing a receiver operating characteristic (ROC) curve. RESULTS The relative NDRG2 expression were significantly downregulated both at mRNA and protein levels in urine of patients with bladder cancer and in cell lines, and its low expression was distinctively correlated with tumor grade and stage. The ROC curve showed NDRG2 could be a good diagnostic marker, with an AUC of 0.888, indicating high sensitivity and specificity. CONCLUSIONS NDRG2 was decreased in patients with bladder cancer and might be involved in the progression of this malignancy. Moreover, NDRG2 could be a potential independent diagnostic biomarker for bladder cancer.


Assuntos
Biomarcadores Tumorais/urina , Proteínas Supressoras de Tumor/urina , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
14.
Am J Physiol Endocrinol Metab ; 311(5): E825-E835, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624102

RESUMO

Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1ß contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1ß/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1ß and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1ß and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.


Assuntos
Caspases Iniciadoras/efeitos dos fármacos , Caspases/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/farmacologia , Interleucina-1beta/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Obesidade/metabolismo , Sobrepeso/metabolismo , Adulto , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/complicações , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos Monoinsaturados/farmacologia , Feminino , Citometria de Fluxo , Imunofluorescência , Inativação Gênica , Humanos , Immunoblotting , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Sobrepeso/complicações , Palmitatos/farmacologia , Projetos Piloto , Reação em Cadeia da Polimerase , Piroptose/efeitos dos fármacos , RNA Mensageiro/metabolismo
15.
Biochem Biophys Res Commun ; 478(1): 46-52, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457805

RESUMO

PURPOSE: Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, is an antidiabetic drug. It has been shown to improve endothelial dysfunction, but the mechanism remains somewhat unclear. Leptin can also improve endothelial function. Cardiovascular disease (CVD) is linked to hyperleptinemia, and leptin resistance, how liraglutide influences the effect of leptin on endothelial function, is never reported. We used palmitic acid (PA) to mimic hyperlipidemia in endothelial cells to explore the cardio-protective mechanism of liraglutide and its impact on the role of leptin. METHODS: Human umbilical vein endothelial cells (HUVECs) were incubated with PA for 16 h and then were treated with liraglutide for 30 min. RESULTS: PA elevated not only phosphorylation of JNK and IKKα/ß, but also the expression of IL-6 in HUVECs. These effects of PA were reversed by liraglutide. In addition, liraglutide increased phosphorylation of eNOS, AMPK, and the release of NO but had no effect on PKC phosphorylation. In addition, leptin elevated eNOS phosphorylation but was abrogated by PA. However, in the presence of liraglutide, leptin regained its function of elevating eNOS phosphorylation. Last, we found that liraglutide inhibited PA-elevated SOCS3, which is a marker of leptin resistance. CONCLUSIONS: GLP-1 impairs endothelial inflammatory signals, improves endothelial function, and reverses leptin resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Leptina/metabolismo , Liraglutida/farmacologia , Ácido Palmítico/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia
16.
Int J Lab Hematol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38826023

RESUMO

INTRODUCTION: The purpose of this study was to investigate the effects and potential mechanisms of ferroptosis-related gene heat shock protein beta-1 (HSPB1) on acute myeloid leukemia (AML). METHODS: The RNA-seq and clinical data of AML samples were obtained from the Genomic Data Commons database, and the FerrDb database was used to screen the marker, drive and suppressor of ferroptosis. Besides, DESeq2 was applied for differential expression analysis on AML samples and screening for differentially expressed genes (DEGs). The screened DEGs were subjected to the intersection analysis with ferroptosis-related genes to identify the ferroptosis-related DEGs. Next, the functional pathways of ferroptosis-related DEGs were further be discussed by Gene Ontology as well as Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs. Additionally, lasso regression analysis was employed to determine the differential genes related to prognosis in patients with AML and the survival analysis was performed. Subsequently, quantitative real-time polymerase chain reaction and western blot assay were applied to detect the mRNA and protein expression levels of HSPB1 in normal/AML bone marrow tissues and human normal (HS-5)/AML (HL-60) bone marrow cells, respectively. Furthermore, HSPB1 was knocked down to assess the expression changes of glutathione peroxidase 4 and acyl-CoA synthetase long-chain family member 4. Ultimately, the viability and oxidative stress levels of HL-60 were analyzed by Cell Counting Kit-8 and biochemical detection. RESULTS: A total of 4986 DEGs were identified in AML samples, with 3324 up-regulated and 1662 down-regulated. The enrichment analysis illustrated that ferroptosis-related DEGs were significantly enriched in response to metal irons, oxidative stress, and other pathways. After lasso regression analysis, 17 feature genes related to the prognosis of patients with AML were obtained, with HSPB1 exhibiting a significant correlation. The reliability of our models was verified by Cox regression analysis and survival analysis of the hazard model. Furthermore, the outcomes of quantitative real-time polymerase chain reaction and western blot showed that mRNA and protein expression levels of HSPB1 were significantly increased in the AML Group and HL-60 cells. The knockdown of HSPB1 in HL-60 cells reduced the protein level of glutathione peroxidase 4, increased the protein level of acyl-CoA synthetase long-chain family member 4, decreased the cell viability, and aggravated oxidative stress. CONCLUSION: Ferroptosis-related gene HSPB1 is highly expressed in patients with AML. In addition, HSPB1 may be involved in the occurrence and development of AML by regulating oxidative stress and ferroptosis-related pathways. This study provides new clues for further understanding of AML molecular mechanisms. Also, HSPB1 is expected to be a potential therapeutic target for AML in the future.

17.
Biochim Biophys Acta ; 1822(11): 1716-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22846606

RESUMO

The crosstalk between mTORC1/S6K1 signaling and AMPK is emerging as a powerful and highly regulated way to gauge cellular energy and nutrient content. The aim of the current study was to determine the mechanism by which exercise training reverses lipid-induced insulin resistance and the role of AMPK/mTOR/S6K1 signaling axis in mediating this response in skeletal muscle. Our results showed that high-fat feeding resulted in decreased glucose tolerance, which was associated with decreased Akt expression and increased intramuscular triglyceride deposition in the skeletal muscle of C57BL/6 mice. Impairments in lipid metabolism were accompanied by increased total protein and phosphorylation of S6K1, SREBP-1c cleavage, and decreased AMPK phosphorylation. Exercise training reversed these impairments, resulting in improved serum lipid profiles and glucose tolerance. C2C12 myotubes were exposed to palmitate, resulting in an increased insulin-dependent Akt Ser473 phosphorylation, associated with a significant increase in the level of phosphorylation of S6K1 on T389. All these changes were reversed by activation of AMPK. Consistent with this, inhibition of AMPK by compound C induced an enhanced phosphorylation of both S6K1 and Akt, and silencing of S6K1 with siRNA showed no effect on Akt phosphorylation in both the absence and presence of palmitate cultured myotubes. In addition, compound C led to an elevated SREBP-1c cleavage but was blocked by S6K1 siRNA. In summary, exercise training inhibits SREBP-1c cleavage through AMPK/mTOR/S6K1 signaling, resulting in decreased intramyocellular lipid accumulation. Our results provide new insights into the mechanism by which AMPK/mTOR/S6K1 signaling axis mediates the physiological process of exercise-induced insulin sensitization.


Assuntos
Proteínas Quinases Ativadas por AMP , Resistência à Insulina , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Proteínas Quinases S6 Ribossômicas 90-kDa , Serina-Treonina Quinases TOR , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Glucose/metabolismo , Insulina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo
18.
Front Oncol ; 13: 1273719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023243

RESUMO

Primary cutaneous follicle center lymphoma (PCFCL) differs from follicular lymphoma in biological behavior and molecular profile and is treated as a distinct entity, according to the 5th edition of the World Health Organization classification of hematolymphoid tumors. It is an uncommon cutaneous B-cell lymphoma that is considerably rare in children and adolescents. To date, only 13 cases of individuals younger than 20 years of age have been reported in the literature. The lack of relevant clinical epidemiological data in this population has hampered the investigation of its clinical and diagnostic aspects. Here we report the case of a 17-year-old male with PCFCL, who may be the first PCFCL patient under 20 years of age reported in China. He was admitted to the hospital with a solitary nodule on his face. After complete surgical excision, the patient's facial mass was histologically identified as PCFCL. The patient's prognosis was favorable, with no recurrence at 17 months of follow-up after the surgical resection. We present a case of an adolescent PCFCL patient and systematically review the literature with a view to increase the awareness of the disease and inform the diagnosis and treatment of this age group.

19.
BMC Public Health ; 12: 732, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22937748

RESUMO

BACKGROUND: Obesity has been shown to be a prognostic indicator of type 2 diabetes (T2D); however, the power of different obesity indicators in the detection of T2D remains controversial. This study evaluates the detecting power of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHTR) for the presence of T2D in undiagnosed diabetics among the Chinese population. METHODS: Individuals were selected from an ongoing large-scale population-based Beijing Community Pre-Diabetes (BCPD) study cohort. The oral glucose tolerance tests (OGTT) were performed to diagnose diabetes. A total of 220 new cases of T2D and 1,868 normal blood glucose subjects were analyzed. ROC curve analyses were used to compare the association of different obesity indicators with T2D and determine the optimal cut-off points of the best predictor for identifying T2D in men and women. RESULTS: All indicators positively correlated with presence of T2D in both men and women. In women, WC, WHR and WHTR were similar, but were better in identifying T2D when compared to BMI (P < 0.0001, P=0.0016 and P=0.0001, respectively). In men, WC, WHTR and BMI were similar, but WC and WHTR were better than WHR (P=0.0234, P=0.0101, respectively). For women, 86 cm was the optimal WC cut-off point, and its sensitivity and specificity were 0.714 and 0.616; for men, the optimal cut-off point was 90 cm, and its sensitivity and specificity were 0.722 and 0.571. CONCLUSION: Compared with BMI, WHR and WHTR, WC is a simple and accurate measure for predicting T2D in the Chinese population.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Obesidade/complicações , Adulto , Idoso , Índice de Massa Corporal , China/epidemiologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Vigilância da População , Curva ROC , Circunferência da Cintura/fisiologia
20.
FEBS Lett ; 596(24): 3159-3175, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35716086

RESUMO

In this study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in contraction-stimulated glucose uptake in skeletal muscle. C2C12 myotubes were contracted by electrical pulse stimulation (EPS), and treadmill running was used to exercise mice. The activities of CaMKII, the small G protein Rac1, and the Rac1 effector kinase PAK1 were elevated in muscle by running exercise or EPS, while they were lowered by the CaMKII inhibitor KN-93 and/or small interfering RNA (siRNA)-mediated knockdown. EPS induced the mRNA and protein expression of the Rac1-GEF Kalirin in a CaMKII-dependent manner. EPS-induced Rac1 activation was lowered by the Kalirin inhibitor ITX3 or siRNA-mediated Kalirin knockdown. KN-93, ITX3, and siRNA-mediated Kalirin knockdown reduced EPS-induced glucose uptake. These findings define a CaMKII-Kalirin-Rac1 signaling pathway that contributes to contraction-stimulated glucose uptake in skeletal muscle myotubes and tissue.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa