Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655764

RESUMO

Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.


Assuntos
Transporte Axonal , Doenças do Sistema Nervoso , Humanos , Transporte Axonal/genética , Transporte Axonal/fisiologia , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(32): e2113795119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917346

RESUMO

KIF1A is a kinesin superfamily motor protein that transports synaptic vesicle precursors in axons. Cargo binding stimulates the dimerization of KIF1A molecules to induce processive movement along microtubules. Mutations in human Kif1a lead to a group of neurodegenerative diseases called KIF1A-associated neuronal disorder (KAND). KAND mutations are mostly de novo and autosomal dominant; however, it is unknown if the function of wild-type KIF1A motors is inhibited by heterodimerization with mutated KIF1A. Here, we have established Caenorhabditis elegans models for KAND using CRISPR-Cas9 technology and analyzed the effects of human KIF1A mutation on axonal transport. In our C. elegans models, both heterozygotes and homozygotes exhibited reduced axonal transport. Suppressor screening using the disease model identified a mutation that recovers the motor activity of mutated human KIF1A. In addition, we developed in vitro assays to analyze the motility of heterodimeric motors composed of wild-type and mutant KIF1A. We find that mutant KIF1A significantly impaired the motility of heterodimeric motors. Our data provide insight into the molecular mechanism underlying the dominant nature of de novo KAND mutations.


Assuntos
Transporte Axonal , Caenorhabditis elegans , Cinesinas , Doenças Neurodegenerativas , Vesículas Sinápticas , Animais , Transporte Axonal/genética , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Genes Dominantes , Humanos , Cinesinas/genética , Atividade Motora/genética , Mutação , Doenças Neurodegenerativas/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
3.
Genes Cells ; 28(2): 97-110, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461782

RESUMO

Dynein is a microtubule-dependent motor protein required for cell division, retrograde intracellular transport, and intraflagellar transport (IFT). Dynein 1 and dynein 2 serve as molecular motors in the cytoplasm and cilia, respectively. Each dynein consists of multiple subunits. Although the components of dynein 1 and dynein 2 are different and specific in most species, a previous study has suggested that dynein intermediate chain subunit DYCI-1 is shared by both dynein 1 and 2 in Caenorhabditis elegans (C. elegans). Here, we show that C. elegans has two dynein intermediate chains-DYCI-1 and WDR-60-and their functions are different. Mutational analysis showed that dyci-1 is essential for the retrograde axonal transport of synaptic vesicles. In the same mutant allele, IFT is not affected at all. Instead, wdr-60 is essential for IFT. Thus, we suggest that dynein 1 and dynein 2 have specific intermediate chains in C. elegans as in other organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Transporte , Proteínas do Citoesqueleto , Dineínas , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo
4.
Cell ; 139(4): 802-13, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914172

RESUMO

The kinesin superfamily proteins (KIFs) are motor proteins that transport organelles and protein complexes in a microtubule- and ATP-dependent manner. We identified KIF26A as a new member of the murine KIFs. KIF26A is a rather atypical member as it lacks ATPase activity. Mice with a homozygous deletion of Kif26a developed a megacolon with enteric nerve hyperplasia. Kif26a-/- enteric neurons showed hypersensitivity for GDNF-Ret signaling, and we find that KIF26A suppressed GDNF-Ret signaling by direct binding and inhibition of Grb2, an essential component of GDNF/Akt/ERK signaling. We therefore propose that the unconventional kinesin KIF26A plays a key role in enteric nervous system development by repressing a cell growth signaling pathway.


Assuntos
Sistema Nervoso Entérico/embriologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Hirschsprung/metabolismo , Cinesinas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Animais , Processos de Crescimento Celular , Linhagem Celular , Colo/citologia , Colo/embriologia , Colo/inervação , Proteína Adaptadora GRB2/metabolismo , Cinesinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33542099

RESUMO

Caenorhabditis elegans is used as a model system to understand the neural basis of behavior, but application of caged compounds to manipulate and monitor the neural activity is hampered by the innate photophobic response of the nematode to short-wavelength light or by the low temporal resolution of photocontrol. Here, we develop boron dipyrromethene (BODIPY)-derived caged compounds that release bioactive phenol derivatives upon illumination in the yellow wavelength range. We show that activation of the transient receptor potential vanilloid 1 (TRPV1) cation channel by spatially targeted optical uncaging of the TRPV1 agonist N-vanillylnonanamide at 580 nm modulates neural activity. Further, neuronal activation by illumination-induced uncaging enables optical control of the behavior of freely moving C. elegans without inducing a photophobic response and without crosstalk between uncaging and simultaneous fluorescence monitoring of neural activity.


Assuntos
Controle Comportamental , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Luz , Neurônios/fisiologia , Neurônios/efeitos da radiação , Animais , Fluorescência , Interneurônios/fisiologia , Regiões Promotoras Genéticas/genética , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo
6.
Biophys J ; 122(22): 4348-4359, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37853694

RESUMO

KIF1A is a member of the kinesin-3 motor protein family that transports synaptic vesicle precursors in axons. Mutations in the Kif1a gene cause neuronal diseases. Most patients are heterozygous and have both mutated and intact KIF1A alleles, suggesting that heterodimers composed of wild-type KIF1A and mutant KIF1A are likely involved in pathogenesis. In this study, we propose mathematical models to describe the motility of KIF1A heterodimers composed of wild-type KIF1A and mutant KIF1A. Our models precisely describe run length, run time, and velocity of KIF1A heterodimers using a few parameters obtained from two homodimers. The first model is a simple hand-over-hand model in which stepping and detachment rates from a microtubule of each head are identical to those in the respective homodimers. Although the velocities of heterodimers expected from this model were in good agreement with the experimental results, this model underestimated the run lengths and run times of some heterodimeric motors. To address this discrepancy, we propose the tethered-head affinity model, in which we hypothesize a tethered head, in addition to a microtubule-binding head, contributes to microtubule binding in a vulnerable one-head-bound state. The run lengths and run times of the KIF1A heterodimers predicted by the tethered-head affinity model matched well with experimental results, suggesting a possibility that the tethered head affects the microtubule binding of KIF1A. Our models provide insights into how each head contributes to the processive movement of KIF1A and can be used to estimate motile parameters of KIF1A heterodimers.


Assuntos
Axônios , Cinesinas , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Microtúbulos/metabolismo , Vesículas Sinápticas/metabolismo
7.
Genes Cells ; 27(6): 421-435, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430760

RESUMO

KIF5A is a kinesin superfamily motor protein that transports various cargos in neurons. Mutations in Kif5a cause familial amyotrophic lateral sclerosis (ALS). These ALS mutations are in the intron of Kif5a and induce mis-splicing of KIF5A mRNA, leading to splicing out of exon 27, which in human KIF5A encodes the cargo-binding tail domain of KIF5A. Therefore, it has been suggested that ALS is caused by loss of function of KIF5A. However, the precise mechanisms regarding how mutations in KIF5A cause ALS remain unclear. Here, we show that an ALS-associated mutant of KIF5A, KIF5A(Δexon27), is predisposed to form oligomers and aggregates in cultured mouse cell lines. Interestingly, purified KIF5A(Δexon27) oligomers showed more active movement on microtubules than wild-type KIF5A in vitro. Purified KIF5A(∆exon27) was prone to form aggregates in vitro. Moreover, KIF5A(Δexon27)-expressing Caenorhabditis elegans neurons showed morphological defects. These data collectively suggest that ALS-associated mutations of KIF5A are toxic gain-of-function mutations rather than simple loss-of-function mutations.


Assuntos
Esclerose Lateral Amiotrófica , Cinesinas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas
8.
Proc Natl Acad Sci U S A ; 116(37): 18429-18434, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31455732

RESUMO

KIF1A is a kinesin family motor involved in the axonal transport of synaptic vesicle precursors (SVPs) along microtubules (MTs). In humans, more than 10 point mutations in KIF1A are associated with the motor neuron disease hereditary spastic paraplegia (SPG). However, not all of these mutations appear to inhibit the motility of the KIF1A motor, and thus a cogent molecular explanation for how KIF1A mutations lead to neuropathy is not available. In this study, we established in vitro motility assays with purified full-length human KIF1A and found that KIF1A mutations associated with the hereditary SPG lead to hyperactivation of KIF1A motility. Introduction of the corresponding mutations into the Caenorhabditis elegans KIF1A homolog unc-104 revealed abnormal accumulation of SVPs at the tips of axons and increased anterograde axonal transport of SVPs. Our data reveal that hyperactivation of kinesin motor activity, rather than its loss of function, is a cause of motor neuron disease in humans.


Assuntos
Transporte Axonal/genética , Predisposição Genética para Doença/genética , Cinesinas/genética , Cinesinas/metabolismo , Mutação , Vesículas Sinápticas/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans/genética , Humanos , Doença dos Neurônios Motores/genética , Paraplegia Espástica Hereditária/genética
9.
Biophys J ; 120(9): 1605-1614, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617835

RESUMO

Synaptic cargo transport by kinesin and dynein in hippocampal neurons was investigated by noninvasively measuring the transport force based on nonequilibrium statistical mechanics. Although direct physical measurements such as force measurement using optical tweezers are difficult in an intracellular environment, the noninvasive estimations enabled enumerating force-producing units (FPUs) carrying a cargo comprising the motor proteins generating force. The number of FPUs served as a barometer for stable and long-distance transport by multiple motors, which was then used to quantify the extent of damage to axonal transport by dynarrestin, a dynein inhibitor. We found that dynarrestin decreased the FPU for retrograde transport more than for anterograde transport. This result indicates the applicability of the noninvasive force measurements. In the future, these measurements may be used to quantify damage to axonal transport resulting from neuronal diseases, including Alzheimer's, Parkinson's, and Huntington's diseases.


Assuntos
Dineínas , Cinesinas , Transporte Axonal , Dineínas/metabolismo , Cinesinas/metabolismo , Miosinas , Pinças Ópticas
10.
Nat Rev Mol Cell Biol ; 10(10): 682-96, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19773780

RESUMO

Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.


Assuntos
Cinesinas/metabolismo , Cinesinas/fisiologia , Proteínas Motores Moleculares/metabolismo , Animais , Transporte Biológico/genética , Dineínas/genética , Dineínas/metabolismo , Humanos , Cinesinas/química , Cinesinas/classificação , Cinesinas/genética , Modelos Biológicos , Proteínas Motores Moleculares/genética , Organelas/genética , Organelas/metabolismo , Filogenia , Proteínas/metabolismo , RNA Mensageiro/metabolismo
12.
Phys Chem Chem Phys ; 20(5): 3403-3410, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29349444

RESUMO

Kinesin superfamily protein UNC-104, a member of the kinesin-3 family, transports synaptic vesicle precursors (SVPs). In this study, the number of active UNC-104 molecules hauling a single SVP in axons in the worm Caenorhabditis elegans was counted by applying a newly developed non-invasive force measurement technique. The distribution of the force acting on a SVP transported by UNC-104 was spread out over several clusters, implying the presence of several force-producing units (FPUs). We then compared the number of FPUs in the wild-type worms with that in arl-8 gene-deletion mutant worms. ARL-8 is a SVP-bound arf-like small guanosine triphosphatase, and is known to promote unlocking of the autoinhibition of the motor, which is critical for avoiding unnecessary consumption of adenosine triphosphate when the motor does not bind to a SVP. There were fewer FPUs in the arl-8 mutant worms. This finding indicates that a lack of ARL-8 decreased the number of active UNC-104 motors, which then led to a decrease in the number of motors responsible for SVP transport.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Cinesinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Transporte Axonal , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Cinesinas/química , Microscopia de Fluorescência , Mutagênese , Vesículas Sinápticas/química
13.
EMBO J ; 32(10): 1352-64, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23503589

RESUMO

Microtubules are fundamental to neuronal morphogenesis and function. Mutations in tubulin, the major constituent of microtubules, result in neuronal diseases. Here, we have analysed ß-tubulin mutations that cause neuronal diseases and we have identified mutations that strongly inhibit axonal transport of vesicles and mitochondria. These mutations are in the H12 helix of ß-tubulin and change the negative charge on the surface of the microtubule. This surface is the interface between microtubules and kinesin superfamily motor proteins (KIF). The binding of axonal transport KIFs to microtubules is dominant negatively disrupted by these mutations, which alters the localization of KIFs in neurons and inhibits axon elongation in vivo. In humans, these mutations induce broad neurological symptoms, such as loss of axons in the central nervous system and peripheral neuropathy. Thus, our data identified the critical region of ß-tubulin required for axonal transport and suggest a molecular mechanism for human neuronal diseases caused by tubulin mutations.


Assuntos
Transporte Axonal/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Doença dos Neurônios Motores/genética , Neurônios/metabolismo , Estrutura Terciária de Proteína , Tubulina (Proteína)/química , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
14.
J Neurosci ; 35(12): 5067-86, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810535

RESUMO

An organelle's subcellular localization is closely related to its function. Early endosomes require localization to somatodendritic regions in neurons to enable neuronal morphogenesis, polarized sorting, and signal transduction. However, it is not known how the somatodendritic localization of early endosomes is achieved. Here, we show that the kinesin superfamily protein 16B (KIF16B) is essential for the correct localization of early endosomes in mouse hippocampal neurons. Loss of KIF16B induced the aggregation of early endosomes and perturbed the trafficking and functioning of receptors, including the AMPA and NGF receptors. This defect was rescued by KIF16B, emphasizing the critical functional role of the protein in early endosome and receptor transport. Interestingly, in neurons expressing a KIF16B deletion mutant lacking the second and third coiled-coils of the stalk domain, the early endosomes were mistransported to the axons. Additionally, the binding of the motor domain of KIF16B to microtubules was inhibited by the second and third coiled-coils (inhibitory domain) in an ATP-dependent manner. This suggests that the intramolecular binding we find between the inhibitory domain and motor domain of KIF16B may serve as a switch to control the binding of the motor to microtubules, thereby regulating KIF16B activity. We propose that this novel autoregulatory "stalk inhibition" mechanism underlies the ability of KIF16B to potentiate the selective somatodendritic localization of early endosomes.


Assuntos
Dendritos/metabolismo , Endossomos/metabolismo , Cinesinas/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Cinesinas/genética , Camundongos , Microtúbulos/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de AMPA/metabolismo , Deleção de Sequência
15.
Proc Natl Acad Sci U S A ; 109(5): 1725-30, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307638

RESUMO

Neuronal morphology is regulated by cytoskeletons. Kinesin superfamily protein 2A (KIF2A) depolymerizes microtubules (MTs) at growth cones and regulates axon pathfinding. The factors controlling KIF2A in neurite development remain totally elusive. Here, using immunoprecipitation with an antibody specific to KIF2A, we identified phosphatidylinositol 4-phosphate 5-kinase alpha (PIPKα) as a candidate membrane protein that regulates the activity of KIF2A. Yeast two-hybrid and biochemical assays demonstrated direct binding between KIF2A and PIPKα. Partial colocalization of the clusters of punctate signals for these two molecules was detected by confocal microscopy and photoactivated localization microscopy. Additionally, the MT-depolymerizing activity of KIF2A was enhanced in the presence of PIPKα in vitro and in vivo. PIPKα suppressed the elongation of axon branches in a KIF2A-dependent manner, suggesting a unique PIPK-mediated mechanism controlling MT dynamics in neuronal development.


Assuntos
Axônios , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Repressoras/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Técnicas de Silenciamento de Genes , Cinesinas/genética , Camundongos , Microscopia de Fluorescência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Repressoras/genética
16.
Curr Opin Cell Biol ; 86: 102301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096601

RESUMO

Kinesin-1, composed of kinesin heavy chain and kinesin light chain, is a founding member of kinesin superfamily and transports various neuronal cargos. Kinesin-1 is one of the most abundant ATPases in the cell and thus need to be tightly regulated to avoid wastage of energy. It has been well established that kinesin-1 is regulated by the autoinhibition mechanism. This review focuses on the recent researches that have contributed to the understanding of mechanisms for the autoinhibition of kinesin-1 and its unlocking. Recent electron microscopic studies have shown an unanticipated structure of autoinhibited kinesin-1. Biochemical reconstitution have revealed detailed molecular mechanisms how the autoinhibition is unlocked. Importantly, misregulation of kinesin-1 is emerging as one of the major causes of amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Cinesinas , Humanos , Cinesinas/metabolismo , Neurônios/metabolismo , Transporte Biológico
17.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206323

RESUMO

Kinesin-3 is a family of microtubule-dependent motor proteins that transport various cargos within the cell. However, the mechanism underlying kinesin-3 activations remains largely elusive. In this study, we compared the biochemical properties of two Caenorhabditis elegans kinesin-3 family proteins, KLP-6 and UNC-104. Both KLP-6 and UNC-104 are predominantly monomeric in solution. As previously shown for UNC-104, non-processive KLP-6 monomer is converted to a processive motor when artificially dimerized. We present evidence that releasing the autoinhibition is sufficient to trigger dimerization of monomeric UNC-104 at nanomolar concentrations, which results in processive movement of UNC-104 on microtubules, although it has long been thought that enrichment in the phospholipid microdomain on cargo vesicles is required for the dimerization and processive movement of UNC-104. In contrast, KLP-6 remains to be a non-processive monomer even when its autoinhibition is unlocked, suggesting a requirement of other factors for full activation. By examining the differences between KLP-6 and UNC-104, we identified a coiled-coil domain called coiled-coil 2 (CC2) that is required for the efficient dimerization and processive movement of UNC-104. Our results suggest a common activation mechanism for kinesin-3 family members, while also highlighting their diversification.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Proteínas do Tecido Nervoso , Animais , Proteínas de Caenorhabditis elegans/genética , Cinesinas/genética , Proteínas dos Microtúbulos , Proteínas do Tecido Nervoso/genética , Multimerização Proteica
18.
Cytoskeleton (Hoboken) ; 80(9-10): 356-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036074

RESUMO

Kinesin-1, a motor protein composed of the kinesin heavy chain (KHC) and the kinesin light chain (KLC), is essential for proper cellular morphogenesis and function. A monoclonal antibody (mAb) called H2 recognizes the KHC in a broad range of species and is one of the most widely used mAbs in cytoskeletal motor research. Here, we present vectors that express recombinant H2 in mammalian cells. We show the recombinant H2 performs as well as the hybridoma-derived H2 in both western blotting and immunofluorescence assays. Additionally, the recombinant H2 can detect all three human KHC isotypes (KIF5A, KIF5B, and KIF5C) and amyotrophic lateral sclerosis-associated KIF5A aggregates in cells. In addition, we developed a chickenized version of the H2 mAb's single chain variable fragment, which can be used in immunofluorescence microscopy and expands the potential applications of H2. Overall, our results demonstrate that recombinant H2 is a useful tool for studying the functions of KHCs.

19.
Methods Mol Biol ; 2431: 465-479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412293

RESUMO

The development and functions of neurons are supported by axonal transport. Axonal transport is a complex process whose regulation involves multiple molecules, such as microtubules, microtubule-associated proteins, kinases, molecular motors, and motor binding proteins. Gain of function and loss of function mutations of genes that encode these proteins often lead to human axonal neuropathy. Caenorhabditis elegans provides a powerful genetic system to study the consequences of gene mutations for axonal transport. Here, we discuss advantages and limitations of using C. elegans, propose standard criteria, and describe methods to analyze the impact of gene mutations on axonal transport in C. elegans. To obtain solid conclusions, it is necessary to image single neurons in vivo labeled by a specific promoter and to confirm that a mutation changes the localization of a cargo. The motility parameters of the transported cargo should then be analyzed in the mutant. This method enables the axonal transport of proteins and organelles, such as synaptic vesicle precursors and mitochondria, to be analyzed.


Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Transporte Axonal/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Cinesinas , Microscopia de Fluorescência/métodos , Mutação , Proteínas do Tecido Nervoso/metabolismo
20.
Cell Rep ; 39(9): 110900, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649356

RESUMO

Kinesin-1 activity is regulated by autoinhibition. Intramolecular interactions within the kinesin heavy chain (KHC) are proposed to be one facet of motor regulation. The KHC also binds to the kinesin light chain (KLC), which has been implicated in both autoinhibition and activation of the motor. We show that the KLC inhibits the kinesin-microtubule interaction independently from the proposed intramolecular interaction within KHC. Cargo-adaptor proteins that bind the KLC stimulated processive movement, but the landing rate of activated kinesin complexes remained low. Mitogen-activated protein 7 (MAP7) enhanced motility by increasing the landing rate and run length of the activated kinesin motors. Our results support a model whereby the motor activity of the kinesin is regulated by synergistic inhibition mechanisms and that cargo-adaptor binding to the KLC releases both mechanisms. However, a non-motor MAP is required for robust microtubule association of the activated motor. Thus, human kinesin is regulated by synergistic autoinhibition and activation mechanisms.


Assuntos
Cinesinas , Microtúbulos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa