Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884773

RESUMO

STAT3 is a transcription factor that regulates various cellular processes with oncogenic potential, thereby promoting tumorigenesis when activated uncontrolled. STAT3 activation is mediated by its tyrosine phosphorylation, triggering dimerization and nuclear translocation. STAT3 also contains a serine phosphorylation site, with a postulated regulatory role in STAT3 activation and G2/M transition. Interleukin-6, a major activator of STAT3, is present in elevated concentrations in uveal melanomas, suggesting contribution of dysregulated STAT3 activation to their pathogenesis. Here, we studied the impact of chelidonine on STAT3 signaling in human uveal melanoma cells. Chelidonine, an alkaloid isolated from Chelidonium majus, disrupts microtubules, causes mitotic arrest and provokes cell death in numerous tumor cells. According to our flow cytometry and confocal microscopy data, chelidonine abrogated IL-6-induced activation and nuclear translocation, but amplified constitutive serine phosphorylation of STAT3. Both effects were restricted to a fraction of cells only, in an all-or-none fashion. A partial overlap could be observed between the affected subpopulations; however, no direct connection could be proven. This study is the first proof on a cell-by-cell basis for the opposing effects of a microtubule-targeting agent on the two types of STAT3 phosphorylation.


Assuntos
Benzofenantridinas/farmacologia , Alcaloides de Berberina/farmacologia , Melanoma/patologia , Fator de Transcrição STAT3/metabolismo , Neoplasias Uveais/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Interleucina-6/metabolismo , Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo
2.
Cytometry A ; 93(11): 1106-1117, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30378727

RESUMO

The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γc -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors. Complementing Pearson correlation data with co-occurrence analysis of confocal microscopic images revealed that a minimum degree of IL-9R/IL-2R co-localization exists at the cell surface regardless of the overall spatial correlation of the two receptor kinds. Moreover, our FRET experiments demonstrated molecular scale assemblies of the elements of the IL-9/IL-2R system. Binding of IL-9 altered the structure and/or composition of these clusters. It is hypothesized, that by sequestering receptor subunits in common membrane areas, the overlapping domains of IL-9R and IL-2R provide a platform enabling both the formation of the appropriate receptor complex as well as subunit sharing between related cytokines. © 2018 International Society for Advancement of Cytometry.


Assuntos
Linfoma/imunologia , Receptores de Interleucina-2/imunologia , Receptores de Interleucina-9/imunologia , Linfócitos T/imunologia , Linhagem Celular , Humanos , Transdução de Sinais/imunologia
3.
Biol Reprod ; 92(1): 8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395676

RESUMO

Seminal vesicle secretion 2 (SVS2) is a protein secreted by the mouse seminal vesicle. We previously demonstrated that SVS2 regulates fertilization in mice; SVS2 is attached to a ganglioside GM1 on the plasma membrane of the sperm head and inhibits sperm capacitation in in vitro fertilization as a decapacitation factor. Furthermore, male mice lacking SVS2 display prominently reduced fertility in vivo, which indicates that SVS2 protects spermatozoa from some spermicidal attack in the uterus. In this study, we tried to investigate the mechanisms by which SVS2 controls in vivo sperm capacitation. SVS2-deficient males that mated with wild-type partners resulted in decreased cholesterol levels on ejaculated sperm in the uterine cavity. SVS2 prevented cholesterol efflux from the sperm plasma membrane and incorporated liberated cholesterol in the sperm plasma membrane, thereby reversibly preventing the induction of sperm capacitation by bovine serum albumin and methyl-beta-cyclodextrin in vitro. SVS2 enters the uterus and the uterotubal junction, arresting sperm capacitation in this area. Therefore, our results show that SVS2 keeps sterols on the sperm plasma membrane and plays a key role in unlocking sperm capacitation in vivo.


Assuntos
Proteínas Secretadas pela Vesícula Seminal/farmacologia , Capacitação Espermática/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Esteróis/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoproteção/efeitos dos fármacos , Tubas Uterinas/efeitos dos fármacos , Tubas Uterinas/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Proteínas Secretadas pela Vesícula Seminal/fisiologia , Espermatozoides/metabolismo
4.
Chemphyschem ; 15(18): 3969-78, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25297818

RESUMO

The interleukin-9 receptor (IL-9R) consists of an α subunit and a γ(c) chain that are shared with other cytokine receptors, including interleukin-2 receptor (IL-2R), an important regulator of T cells. We previously showed that IL-2R is expressed in common clusters with major histocompatibility complex (MHC) glycoproteins in lipid rafts of human T lymphoma cells, which raised the question about what the relationship between clusters of IL-2R/MHC and IL-9R is. Confocal microscopy colocalization and fluorescence resonance energy transfer experiments capable of detecting membrane protein organization at different size scales revealed nonrandom association of IL-9R with IL-2R/MHC clusters at the surface of human T lymphoma cells. Accommodation of IL-9Rα in membrane areas segregated from the IL-2R/MHC domains was also detected. The bipartite nature of IL-9R distribution was mirrored by signal transducer and activator of transcription (STAT) activation results. Our data indicate that co-compartmentalization with MHC glycoproteins is a general property of γ(c) receptors. Distribution of receptor chains between different membrane domains may regulate their function.


Assuntos
Glicoproteínas/análise , Antígenos HLA/análise , Linfoma de Células T/patologia , Receptores de Interleucina-2/análise , Receptores de Interleucina-9/análise , Linfócitos T/patologia , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Complexo Principal de Histocompatibilidade , Microscopia Confocal , Linfócitos T/química
5.
Basic Res Cardiol ; 107(2): 244, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22237651

RESUMO

We tested the hypothesis that myocardial contractile protein phosphorylation and the Ca(2+) sensitivity of force production are dysregulated in a porcine model of pacing-induced heart failure (HF). The level of protein kinase A (PKA)-dependent cardiac troponin I (TnI) phosphorylation was lower in the myocardium surrounding the pacing electrode (pacing site) of the failing left ventricle (LV) than in the controls. Immunohistochemical assays of the LV pacing site pointed to isolated clusters of cardiomyocytes exhibiting a reduced level of phosphorylated TnI. Flow cytometry on isolated and permeabilized cardiomyocytes revealed a significantly larger cell-to-cell variation in the level of TnI phosphorylation of the LV pacing site than in the opposite region in HF or in either region in the controls: the interquartile range (IQR) on the distribution histogram of relative TnI phosphorylation was wider at the pacing site (IQR = 0.53) than that at the remote site of HF (IQR = 0.42; P = 0.0047) or that of the free wall of the control animals (IQR = 0.36; P = 0.0093). Additionally, the Ca(2+) sensitivities of isometric force production were higher and appeared to be more variable in single permeabilized cardiomyocytes from the HF pacing site than in the healthy myocardium. In conclusion, the level of PKA-dependent TnI phosphorylation and the Ca(2+) sensitivity of force production exhibited a high cell-to-cell variability at the LV pacing site, possibly explaining the abnormalities of the regional myocardial contractile function in a porcine model of pacing-induced HF.


Assuntos
Insuficiência Cardíaca/metabolismo , Miofibrilas/metabolismo , Troponina I/metabolismo , Animais , Western Blotting , Estimulação Cardíaca Artificial , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Fosforilação , Suínos
6.
Immunol Lett ; 116(2): 117-25, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280585

RESUMO

Interleukin-2 and interleukin-15 (IL-2, IL-15) are key participants in T and NK cell activation and function. Sharing the beta and gamma receptor subunits results in several common functions: e.g. the promotion of T cell proliferation. On the other hand, due to their distinct alpha receptor subunits, they also play opposing roles in immune processes such as activation induced cell death and immunological memory. Divergence of signaling pathways must ensue already at the plasma membrane where the cytokines interact with their receptors. Therefore understanding molecular details of receptor organization and mapping interactions with other membrane proteins that might influence receptor conformation and function, are of key importance. Biophysical/advanced microscopic methods (fluorescence resonance energy transfer (FRET), fluorescence crosscorrelation spectroscopy (FCCS), near-field scanning optical microscopy (NSOM), X-ray crystallography, surface plasmon resonance, NMR spectroscopy) have been instrumental in clarifying the details of receptor structure and organization from the atomic level to the assembly and dynamics of supramolecular clusters. In this short review some important contributions shaping our current view of IL-2 and IL-15 receptors are presented.


Assuntos
Receptores de Interleucina-15/química , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-2/química , Receptores de Interleucina-2/metabolismo , Animais , Fenômenos Biofísicos , Biofísica , Humanos , Ligantes , Conformação Proteica , Receptores de Interleucina-15/imunologia , Receptores de Interleucina-2/imunologia
7.
Eur J Pharm Sci ; 64: 1-8, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25149126

RESUMO

2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) is a tumor diagnostic radiotracer of great importance in both diagnosing primary and metastatic tumors and in monitoring the efficacy of the treatment. P-glycoprotein (Pgp) is an active transporter that is often expressed in various malignancies either intrinsically or appears later upon disease progression or in response to chemotherapy. Several authors reported that the accumulation of (18)FDG in P-glycoprotein (Pgp) expressing cancer cells (Pgp(+)) and tumors is different from the accumulation of the tracer in Pgp nonexpressing (Pgp(-)) ones, therefore we investigated whether (18)FDG is a substrate or modulator of Pgp pump. Rhodamine 123 (R123) accumulation experiments and ATPase assay were used to detect whether (18)FDG is substrate for Pgp. The accumulation and efflux kinetics of (18)FDG were examined in two different human gynecologic (A2780/A2780AD and KB-3-1/KB-V1) and a mouse fibroblast (3T3 and 3T3MDR1) Pgp(+) and Pgp(-) cancer cell line pairs both in cell suspension and monolayer cultures. We found that (18)FDG and its derivatives did not affect either the R123 accumulation in Pgp(+) cells or the basal and the substrate stimulated ATPase activity of Pgp supporting that they are not substrates or modulators of the pump. Measuring the accumulation and efflux kinetics of (18)FDG in different Pgp(+) and Pgp(-) cell line pairs, we have found that the Pgp(+) cells exhibited significantly higher (p⩽0.01) (18)FDG accumulation and slightly faster (18)FDG efflux kinetics compared to their Pgp(-) counterparts. The above data support the idea that expression of Pgp may increase the energy demand of cells resulting in higher (18)FDG accumulation and faster efflux. We concluded that (18)FDG and its metabolites are not substrates of Pgp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Fluordesoxiglucose F18 , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular , Citometria de Fluxo , Fluordesoxiglucose F18/farmacocinética , Humanos , Camundongos , Células NIH 3T3 , Rodamina 123/farmacocinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa