Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 583(7817): 638-643, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555463

RESUMO

N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.


Assuntos
Acetilação , Citidina/análogos & derivados , Células Eucarióticas/metabolismo , Evolução Molecular , RNA/química , RNA/metabolismo , Archaea/química , Archaea/citologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Sequência Conservada , Microscopia Crioeletrônica , Citidina/metabolismo , Células Eucarióticas/citologia , Células HeLa , Humanos , Modelos Moleculares , Acetiltransferases N-Terminal/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Temperatura
2.
Genes Dev ; 30(21): 2376-2390, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881600

RESUMO

In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4-6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.


Assuntos
Modelos Moleculares , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Sítios de Ligação , Linhagem Celular , Cristalização , Células HEK293 , Humanos , Mutação Puntual , Ligação Proteica , Domínios Proteicos/genética , Estrutura Terciária de Proteína , Transporte Proteico , Precursores de RNA/química , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Proteínas do Complexo SMN/genética
3.
Anal Chem ; 95(2): 1366-1375, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574727

RESUMO

mRNA-based medicines are a promising modality for preventing virus-caused illnesses, including COVID-19, and treating various types of cancer and genetic diseases. To develop such medicines, methods to characterize long mRNA molecules are needed for quality control and metabolic analysis. Here, we developed an analytical platform based on isotope-dilution liquid chromatography-mass spectrometry (LC-MS) that quantitatively characterizes long, modified mRNAs by comparing them to a stable isotope-labeled reference with an identical sequence to that of the target medicine. This platform also includes database searching using the mass spectra as a query, which allowed us to confirm the primary structures of 200 to 4300 nt mRNAs including chemical modifications, with sequence coverage at 100%, to detect/identify defects in the sequences, and to define the efficiencies of the 5'-capping and integrity of the polyadenylated tail. Our findings indicated that this platform should be valuable for quantitatively characterizing mRNA vaccines and other mRNA medicines.


Assuntos
COVID-19 , Humanos , Indicadores e Reagentes , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Padrões de Referência , Isótopos , Marcação por Isótopo/métodos
4.
Anal Biochem ; 683: 115349, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852348

RESUMO

Many ion channels and receptor proteins are potential targets for new drugs. However, standard methods for profiling these integral membrane proteins (IMPs) have not been fully established, especially when applied to rare and quantity-limited biological samples. We previously demonstrated that a mixture containing 1-butyl-3-methylimidazolium cyanate, an ionic liquid (IL), and NaOH (termed i-soln) is an excellent solubilizer for insoluble aggregates. In this study, we present a combined i-soln-assisted proteomic sample preparation platform (termed pTRUST), which is compatible with starting materials in the sub-microgram range, using our previously reported i-soln-based sample preparation strategy (iBOPs) and an in-StageTip technique. This novel and straightforward approach allows for the rapid solubilization and processing of a variety of IMPs from human samples to support highly sensitive mass spectrometry analysis. We also demonstrated that the performance of this technology surpasses that of conventional methods such as filter-aided sample preparation methods, FASP and i-FASP. The convenience and availability of pTRUST technology using the IL system have great potential for proteomic identification and characterization of novel drug targets and disease biology in research and clinical settings.


Assuntos
Líquidos Iônicos , Proteoma , Humanos , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida/métodos , Proteínas de Membrana/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003730

RESUMO

Feeder cells and the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in a culture medium promote mitosis and cell division in cultured cells. These are also added to nutrient medium for the cultivation of highly active in mitosis and dividing zygotes, produced in vitro or isolated from pollinated ovaries. In the study, an in vitro fertilization (IVF) system was used to study the precise effects of feeder cells and 2,4-D on the growth and development of rice (Oryza sativa L.) zygote. The elimination of 2,4-D from the culture medium did not affect the early developmental profiles of the zygotes, but decreased the division rates of multicellular embryos. The omission of feeder cells resulted in defective karyogamy, fusion between male and female nuclei, and the subsequent first division of the cultured zygotes. The culture of zygotes in a conditioned medium corrected developmental disorders. Proteome analyses of the conditioned medium revealed the presence of abundant hydrolases possibly released from the feeder cells. Exogenously applied α-amylase ameliorated karyogamy and promoted zygote development. It is suggested that hydrolytic enzymes, including α-amylase, released from feeder cells may be involved in the progression of zygotic development.


Assuntos
Oryza , Zigoto , Meios de Cultivo Condicionados/farmacologia , Mitose , Fertilização in vitro , Células Cultivadas , alfa-Amilases , Ácido 2,4-Diclorofenoxiacético
6.
Nucleic Acids Res ; 48(20): 11750-11761, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33091122

RESUMO

Ribosomal RNA is the central component of the ribosome, mediating its functional and architectural properties. Here, we report the cryo-EM structure of a highly divergent cytoplasmic ribosome from the single-celled eukaryotic alga Euglena gracilis. The Euglena large ribosomal subunit is distinct in that it contains 14 discrete rRNA fragments that are assembled non-covalently into the canonical ribosome structure. The rRNA is substantially enriched in post-transcriptional modifications that are spread far beyond the catalytic RNA core, contributing to the stabilization of this highly fragmented ribosome species. A unique cluster of five adenosine base methylations is found in an expansion segment adjacent to the protein exit tunnel, such that it is positioned for interaction with the nascent peptide. As well as featuring distinctive rRNA expansion segments, the Euglena ribosome contains four novel ribosomal proteins, localized to the ribosome surface, three of which do not have orthologs in other eukaryotes.


Assuntos
Euglena gracilis/química , RNA Ribossômico/química , Ribossomos/química , Microscopia Crioeletrônica , Citoplasma/química , Euglena gracilis/genética , Euglena gracilis/metabolismo , Modelos Moleculares , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química
7.
Nucleic Acids Res ; 47(5): 2487-2505, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30759234

RESUMO

TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Corpos Enovelados/genética , Proteínas de Ligação a DNA/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/patologia , Nucléolo Celular/genética , Corpos Enovelados/metabolismo , Citidina/análogos & derivados , Citidina/genética , Células HeLa , Humanos , Chaperonas Moleculares , RNA Guia de Cinetoplastídeos/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Telomerase
8.
Anal Chem ; 92(16): 11349-11356, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32662983

RESUMO

Pseudouridine (Ψ) is the only "mass-silent" nucleoside produced by post-transcriptional RNA modification. We developed a mass spectrometry (MS)-based technique coupled with in vivo deuterium (D) labeling of uridines for direct determination of Ψs in cellular RNA and applied it to the comprehensive analysis of post-transcriptional modifications in human ribosomal RNAs. The method utilizes human TK6/mouse FM3A cells deficient in uridine monophosphate synthase using a CRISPR-Cas9 technique to turn off de novo uridine synthesis and fully labels uridines with D at uracil positions 5 and 6 by cultivating the cells in a medium containing uridine-5,6-D2. The pseudouridylation reaction in those cells results in the exchange of the D at the C5 of uracil with hydrogen from solvent, which produces a -1 Da mass shift, thus allowing MS-based determination of RNA Ψs. We present here the experimental details of this method and show that it allows the identification of all Ψs in human major nuclear and nucleolar RNAs, including several previously unknown Ψs. Because the method allows direct determination of Ψs at the femtomole level of RNA, it will serve as a useful tool for structure/function studies of a wide variety of noncoding RNAs.


Assuntos
Pseudouridina/análise , Processamento Pós-Transcricional do RNA , RNA Ribossômico/análise , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/análise , RNA Nuclear Pequeno/metabolismo , Animais , Linhagem Celular , Deutério/química , Humanos , Marcação por Isótopo , Espectrometria de Massas , Camundongos , Complexos Multienzimáticos/química , Orotato Fosforribosiltransferase/química , Orotidina-5'-Fosfato Descarboxilase/química , Pseudouridina/química , RNA Ribossômico/química , RNA Nuclear Pequeno/química
9.
Nucleic Acids Res ; 46(18): 9289-9298, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30202881

RESUMO

During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/genética , RNA/genética , Ribossomos/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Microscopia Crioeletrônica , Disceratose Congênita/genética , Células HeLa , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA/química , RNA/metabolismo , RNA Ribossômico 28S/química , RNA Ribossômico 28S/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
10.
Anal Chem ; 91(24): 15634-15643, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31725277

RESUMO

RNA post-transcriptional modifications are common in all kingdoms of life and are predominantly affiliated with methylations at various nucleobase positions. Methylations occur frequently at specific sites on the RNA nucleobases and appear to regulate site-specific intermolecular/intramolecular interactions. Herein, we present a method that utilizes liquid chromatography-mass spectrometry (LC-MS) to identify positional monomethylated RNA nucleoside isomers. The method produces profiles of in-source fragmentation and subsequent tandem mass spectrometry (MS2) (pseudo-MS3) of RNase-digested fragments of an RNA and distinguishes between positional methylated nucleobase isomers by comparing their intranucleobase fragment ion profiles with signature profiles derived from authentic isomers. For method validation, we independently determined the positions of all known monomethylated nucleoside isomers in the Escherichia coli 16S/23S rRNAs. As proof of concept, we further applied this technology to fully characterize the base-modified nucleoside positional isomers, in rRNAs derived from Leishmania donovani, a human blood parasite afflicting millions around the globe. The method described herein will be highly beneficial for the delineation of RNA modification profiles in various cellular RNAs, and as it only requires a subpicomole amount of RNA, it could also be used for the structure-function studies of RNA populations represented in minute amounts in the cell.


Assuntos
Escherichia coli/genética , Leishmania/genética , Nucleosídeos/análise , RNA Ribossômico 18S/análise , RNA Ribossômico/análise , Humanos , Metilação , Nucleosídeos/química , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico 18S/química
11.
Nucleic Acids Res ; 45(6): 3437-3447, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27899605

RESUMO

Ribosome biogenesis occurs successively in the nucleolus, nucleoplasm, and cytoplasm. Maturation of the ribosomal small subunit is completed in the cytoplasm by incorporation of a particular class of ribosomal proteins and final cleavage of 18S-E pre-rRNA (18S-E). Here, we show that poly(A)-specific ribonuclease (PARN) participates in steps leading to 18S-E maturation in human cells. We found PARN as a novel component of the pre-40S particle pulled down with the pre-ribosome factor LTV1 or Bystin. Reverse pull-down analysis revealed that PARN is a constitutive component of the Bystin-associated pre-40S particle. Knockdown of PARN or exogenous expression of an enzyme-dead PARN mutant (D28A) accumulated 18S-E in both the cytoplasm and nucleus. Moreover, expression of D28A accumulated 18S-E in Bystin-associated pre-40S particles, suggesting that the enzymatic activity of PARN is necessary for the release of 18S-E from Bystin-associated pre-40S particles. Finally, RNase H-based fragmentation analysis and 3΄-sequence analysis of 18S-E species present in cells expressing wild-type PARN or D28A suggested that PARN degrades the extended regions encompassing nucleotides 5-44 at the 3΄ end of mature 18S rRNA. Our results reveal a novel role for PARN in ribosome biogenesis in human cells.


Assuntos
Exorribonucleases/fisiologia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Moléculas de Adesão Celular/análise , Exorribonucleases/análise , Exorribonucleases/genética , Exorribonucleases/metabolismo , Células HeLa , Humanos , Mutação , Proteínas Ribossômicas/análise , Subunidades Ribossômicas Menores de Eucariotos/química
12.
RNA Biol ; 15(2): 261-268, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168419

RESUMO

During the biogenesis of U1 small nuclear ribonucleoprotein, a small population of U1 snRNA molecules acquires an extra methylation at the first transcribed nucleotide and a nucleolytic cleavage to remove the 3' structured region including the Sm protein-binding site and stem-loop 4. These modifications occur before hypermethylation of the monomethylated 5' cap, whereby producing truncated forms of U1 snRNA (U1-tfs) that are diverted from the normal pathway to a processing body-associated degradation pathway. Here, we demonstrate that a small population of U2 snRNA molecules receives post-transcriptional modifications similar to those of U1 to yield U2-tfs. Like U1-tfs, U2-tfs molecules were produced from transcripts of the U2 snRNA gene having all cis-elements or lacking the 3' box. Unlike U1-tfs, however, a portion of U2-tfs received additional uridylylation of up to 5 nucleotides in length at position 87 (designated as U2-tfs-polyU) and formed an Sm protein-binding site-like structure that was stabilized by the small nuclear ribonucleoprotein SmB/B' probably as a part of heptameric Sm core complex that associates to the RNA. Both U2-tfs and U2-tfs-polyU were degraded by a nuclease distinct from the canonical Dis3L2 by a process catalyzed by terminal uridylyltransferase 7. Collectively, our data suggest that U2 snRNA biogenesis is regulated, at least in part, by a novel degradation pathway to ensure that defective U2 molecules are not incorporated into the spliceosome.


Assuntos
RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética
13.
Nucleic Acids Res ; 44(20): 9847-9859, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27683223

RESUMO

Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5' end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention.


Assuntos
Regulação da Expressão Gênica , Homeostase , Íntrons , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , Splicing de RNA , RNA Mensageiro/genética , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Processamento Alternativo , Linhagem Celular , Expressão Gênica , Ordem dos Genes , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
14.
Nucleic Acids Res ; 44(6): e59, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26673725

RESUMO

Pseudouridine (5-ribosyluracil, Ψ) is the only 'mass-silent' nucleoside produced by post-transcriptional RNA modification. We describe here a novel mass spectrometry (MS)-based method for direct determination of Ψ in RNA. The method assigns a Ψ-containing nucleolytic RNA fragment by an accurate measurement of a signature doubly dehydrated nucleoside anion ([C9H7N2O4](1-),m/z207.04) produced by collision-induced dissociation MS, and it determines the Ψ-containing nucleotide sequence by pseudo-MS(3), i.e. in-source fragmentation followed by MS(2) By applying this method, we identified all of the known Ψs in the canonical human spliceosomal snRNAs and, unexpectedly, found two previously unknown Ψs in the U5 and U6 snRNAs. Because the method allows direct determination of Ψ in a subpicomole quantity of RNA, it will serve as a useful tool for the structure/function studies of a wide variety of non-coding RNAs.


Assuntos
Espectrometria de Massas/métodos , Pseudouridina/química , Processamento Pós-Transcricional do RNA , RNA Nuclear Pequeno/química , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Pseudouridina/metabolismo , RNA Nuclear Pequeno/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo
15.
Nucleic Acids Res ; 44(18): 8951-8961, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27325748

RESUMO

We present the complete chemical structures of the rRNAs from the eukaryotic model organism, Saccharomyces cerevisiae The final structures, as determined with mass spectrometry-based methodology that includes a stable isotope-labelled, non-modified reference RNA, contain 112 sites with 12 different post-transcriptional modifications, including a previously unidentified pseudouridine at position 2345 in 25S rRNA. Quantitative mass spectrometry-based stoichiometric analysis of the different modifications at each site indicated that 94 sites were almost fully modified, whereas the remaining 18 sites were modified to a lesser extent. Superimposed three-dimensional modification maps for S. cerevisiae and Schizosaccharomyces pombe rRNAs confirmed that most of the modified nucleotides are located in functionally important interior regions of the ribosomes. We identified snR9 as the snoRNA responsible for pseudouridylation of U2345 and showed that this pseudouridylation occurs co-transcriptionally and competitively with 2'-O-methylation of U2345. This study ends the uncertainty concerning whether all modified nucleotides in S. cerevisiae rRNAs have been identified and provides a resource for future structural, functional and biogenesis studies of the eukaryotic ribosome.


Assuntos
RNA Fúngico/química , RNA Fúngico/genética , RNA Ribossômico/química , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Composição de Bases , Cromatografia Líquida , Espectrometria de Massas , Metilação , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Nucleic Acids Res ; 43(18): e115, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26013808

RESUMO

We present a liquid chromatography-mass spectrometry (LC-MS)-based method for comprehensive quantitative identification of post-transcriptional modifications (PTMs) of RNA. We incorporated an in vitro-transcribed, heavy isotope-labeled reference RNA into a sample RNA solution, digested the mixture with a number of RNases and detected the post-transcriptionally modified oligonucleotides quantitatively based on shifts in retention time and the MS signal in subsequent LC-MS. This allowed the determination and quantitation of all PTMs in Schizosaccharomyces pombe ribosomal (r)RNAs and generated the first complete PTM maps of eukaryotic rRNAs at single-nucleotide resolution. There were 122 modified sites, most of which appear to locate at the interface of ribosomal subunits where translation takes place. We also identified PTMs at specific locations in rRNAs that were altered in response to growth conditions of yeast cells, suggesting that the cells coordinately regulate the modification levels of RNA.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Schizosaccharomyces/genética , Células HeLa , Humanos , Modelos Moleculares , Schizosaccharomyces/metabolismo
17.
Nucleic Acids Res ; 42(4): 2708-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311566

RESUMO

The U1 small nuclear ribonucleoprotein (snRNP) plays pivotal roles in pre-mRNA splicing and in regulating mRNA length and isoform expression; however, the mechanism of U1 snRNA quality control remains undetermined. Here, we describe a novel surveillance pathway for U1 snRNP biogenesis. Mass spectrometry-based RNA analysis showed that a small population of SMN complexes contains truncated forms of U1 snRNA (U1-tfs) lacking the Sm-binding site and stem loop 4 but containing a 7-monomethylguanosine 5' cap and a methylated first adenosine base. U1-tfs form a unique SMN complex, are shunted to processing bodies and have a turnover rate faster than that of mature U1 snRNA. U1-tfs are formed partly from the transcripts of U1 genes and partly from those lacking the 3' box elements or having defective SL4 coding regions. We propose that U1 snRNP biogenesis is under strict quality control: U1 transcripts are surveyed at the 3'-terminal region and U1-tfs are diverted from the normal U1 snRNP biogenesis pathway.


Assuntos
RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Adenosina/metabolismo , Citoplasma/metabolismo , Guanosina/análogos & derivados , Guanosina/análise , Espectrometria de Massas , Metilação , Estabilidade de RNA , RNA Nuclear Pequeno/genética , Proteínas do Complexo SMN/metabolismo
18.
J Proteome Res ; 13(11): 4847-58, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24967658

RESUMO

This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/diagnóstico , Proteínas/análise , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Eletroforese em Gel de Poliacrilamida , Humanos , Neoplasias Hepáticas/genética , Espectrometria de Massas/métodos , Redes e Vias Metabólicas/genética , Transdução de Sinais/genética
19.
Sci Rep ; 14(1): 17366, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075114

RESUMO

Endospore-forming bacteria are ubiquitous. Bacterial endospores are multilayered proteinaceous structures that protects the bacterial genome during stress conditions. They are also responsible for a wide range of critical clinical infections in humans. Precise analysis of spore-forming pathogens remains a major challenge in the field of proteomics because spore structures are highly resistant to conventional solubilizers and denaturing agents, such as sodium dodecyl sulfate and urea. We present an ionic liquid-assisted (i-soln) technique of sample preparation, called pTRUST, which enables shotgun analysis of Bacillus subtilis spores even when the starting materials are in the sub-microgram range. In proteomic analysis, this technique shows 50-2000-fold higher sensitivity than other conventional gel-based or gel-free methods (including one-pot sample processing). Using this technique, we identified 445 proteins with high confidence from trace amounts of highly pure spore preparations, including 52 of the 79 proteins (approximately 70%) previously demonstrated to be localized in spores in the SubtiWiki database and detected through direct protein analysis. Consequently, 393 additional proteins were identified as candidates for spore constitutive proteins. Twenty of these newly identified candidates were produced as green fluorescent protein fusion proteins, and each was evaluated for authenticity as a spore constituent using fluorescence microscopy analysis. The pTRUST method's sensitivity and reliability using the i-soln system, together with hitherto unreported proteins in spores, will enable an array of spore research for biological and clinical applications.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Líquidos Iônicos , Proteômica , Esporos Bacterianos , Bacillus subtilis/metabolismo , Esporos Bacterianos/metabolismo , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Líquidos Iônicos/química , Proteoma/análise , Proteoma/metabolismo
20.
Nat Commun ; 15(1): 4272, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769321

RESUMO

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.


Assuntos
Ribossomos Mitocondriais , RNA de Transferência , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ligantes , Simulação de Dinâmica Molecular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Mitocôndrias/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/química , Guanosina Difosfato/metabolismo , Poliaminas/metabolismo , Poliaminas/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa