Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 222: 106532, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38857716

RESUMO

Chlamydia trachomatis (CT) is the bacterial pathogen responsible for causing the most common sexually transmitted disease in the United States. This obligate, intracellular Gram-negative bacterium has a type III secretion system (T3SS) to invade host cells. CopN is an important effector, plug protein that mediates early interactions between the host and Chlamydia. CopN is chaperoned by a heterodimer, T3SS chaperone complex containing Scc4 and Scc1. Scc4 is a unique, bifunctional protein that, in addition to its T3SS chaperone activity, acts as an RNA polymerase (RNAP) binding protein. We hypothesized that the two functions occur at different points in CT's developmental cycle with Scc4 acting alone in the early-to-mid stages and the Scc4:Scc1 complex chaperoning CopN in the mid-to-late stages. To study the Scc4:Scc1 complex by NMR, we previously explored various methods of associating Scc4 and Scc1 in vitro to produce the complex with chain-selective isotopic labeling. Though co-expressed Scc4 and Scc1 form a stable complex, the in vitro association studies suggest that partial protein denaturation and/or components in E. coli lysate are necessary to form the stable complex. In this study Scc4 and Scc1 were sequentially expressed in E. coli under the control of different promoters, allowing separate isotopic labeling of each chain and complex formation in vivo. Sequential expression resulted in no or unstable complex formation depending on the culture medium used. These results, taken together with previous in vitro association studies, suggest that Scc4 and Scc1 assemble co-translationally to form the stable Scc4:Scc1 complex in E. coli.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Escherichia coli , Chaperonas Moleculares , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Expressão Gênica
2.
Biomacromolecules ; 24(11): 4771-4782, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37815312

RESUMO

Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein-polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.


Assuntos
Polímeros , Proteínas , Polímeros/química , Proteínas/química , Polietilenoglicóis/química , Substâncias Macromoleculares/química , Sacarose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa