Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782457

RESUMO

Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.


Assuntos
Membranas Intracelulares/metabolismo , Lipofuscina/farmacologia , Lisossomos/metabolismo , Necroptose/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Envelhecimento , Oxirredutases do Álcool , Animais , Morte Celular , Humanos , Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(14): E1402-8, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706818

RESUMO

Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (ß-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of ß-CD. Importantly, ß-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of ß-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of ß-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.


Assuntos
Lipofuscina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , beta-Ciclodextrinas/metabolismo , Animais , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Fluorescência , Técnicas In Vitro , Lipofuscina/isolamento & purificação , Camundongos , Camundongos Knockout , Oxirredução , Retinoides/isolamento & purificação
3.
ACS Bio Med Chem Au ; 2(3): 297-306, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101569

RESUMO

N-Retinylidene-N-retinylethanolamine (A2E) is the most studied lipid bisretinoid. It forms lipofuscin deposits in the retinal pigment epithelium (RPE), causing vision impairment and blindness in eye conditions, such as Stargardt's disease, cone-rod dystrophy, Best's macular dystrophy, and potentially age-related macular degeneration. Synthetic A2E is often used for inducing the accumulation of lipofuscins within the lysosomes of RPE cells in culture as an in vitro surrogate of retinal lipofuscin buildup, providing insights into the mechanisms of these eye conditions. Many reports describing the use of synthetic A2E employ material that has been prepared using a one-pot reaction of all-trans-retinal (ATR) and ethanolamine at room temperature for 48 h. We have revisited this synthesis by performing a design of experiments (DoE) and high-throughput experimentation workflow that was tailored to identify the most productive combination of the variables (temperature, solvent, and reagent equivalences) for optimization of A2E yield. Our DoE findings revealed that the interaction of ethanolamine with acetic acid and ATR was pivotal for the formation of A2E in high yield, indicating that imine formation is the critical step in the reaction. Armed with these results, we were able to optimize the method using a microfluidic reactor system before upscaling those conditions for continuous flow synthesis of A2E. This revised method enabled a more efficient production of material, from a reaction time of 48 h to a residence time of 33 min, with an accompanying yield improvement from 49 to 78%. Furthermore, we implemented a simple method to evaluate the quality of the A2E produced using optical spectroscopy and LC-MS characteristics to assure that the biological properties observed with A2E samples are not confounded by the presence of oxidized impurities that are commonly present in conventional A2E samples.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa