Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
EMBO J ; 40(1): e104273, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264441

RESUMO

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Transcrição Gênica/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipocótilo/genética , Fitocromo/genética
2.
Plant J ; 113(5): 1049-1061, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606401

RESUMO

Plants exposed to light fluctuations are protected from photodamage by non-photochemical quenching (NPQ), a reversible mechanism that enables dissipation of excess absorbed energy as heat, which is essential for plant fitness and crop productivity. In plants NPQ requires the presence of the membrane protein PsbS, which upon activation interacts with antenna proteins, inducing their dissipative conformation. Here, we exploited base editing (BE) in the moss Physcomitrium patens to introduce specific amino acid changes in vivo and assess their impact on PsbS activity, targeting transmembrane regions to investigate their role in essential protein-protein interactions. This approach enabled the recognition of residues essential for protein stability and the identification of a hydrophobic cluster of amino acids impacting PsbS activity. This work provides new information on the molecular mechanism of PsbS while also demonstrating the potential of BE approaches for in planta gene function analysis.


Assuntos
Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Edição de Genes , Complexos de Proteínas Captadores de Luz/metabolismo
3.
Plant J ; 114(1): 7-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794900

RESUMO

Plants colonized the land approximately 470 million years ago, coinciding with the development of apical cells that divide in three planes. The molecular mechanisms that underly the development of the 3D growth pattern are poorly understood, mainly because 3D growth in seed plants starts during embryo development. In contrast, the transition from 2D to 3D growth in the moss Physcomitrium patens has been widely studied, and it involves a large turnover of the transcriptome to allow the establishment of stage-specific transcripts that facilitate this developmental transition. N6 -Methyladenosine (m6 A) is the most abundant, dynamic and conserved internal nucleotide modification present on eukaryotic mRNA and serves as a layer of post-transcriptional regulation directly affecting several cellular processes and developmental pathways in many organisms. In Arabidopsis, m6 A has been reported to be essential for organ growth and determination, embryo development and responses to environmental signals. In this study, we identified the main genes of the m6 A methyltransferase complex (MTC), MTA, MTB and FIP37, in P. patens and demonstrate that their inactivation leads to the loss of m6 A in mRNA, a delay in the formation of gametophore buds and defects in spore development. Genome-wide analysis revealed several transcripts affected in the Ppmta background. We demonstrate that the PpAPB1-PpAPB4 transcripts, encoding central factors orchestrating the transition from 2D to 3D growth in P. patens, are modified by m6 A, whereas in the Ppmta mutant the lack of the m6 A marker is associated with a corresponding decrease in transcript accumulation. Overall, we suggest that m6 A is essential to enable the proper accumulation of these and other bud-specific transcripts directing the turnover of stage-specific transcriptomes, and thus promoting the transition from protonema to gametophore buds in P. patens.


Assuntos
Arabidopsis , Bryopsida , RNA Mensageiro/genética , Bryopsida/genética , Proliferação de Células , Arabidopsis/genética , Transcriptoma
4.
J Exp Bot ; 75(7): 2100-2112, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069501

RESUMO

Downy mildew of grapevine (Vitis vinifera), caused by the oomycete Plasmopara viticola, is an important disease that is present in cultivation areas worldwide, and using resistant varieties provides an environmentally friendly alternative to fungicides. DOWNY MILDEW RESISTANT 6 (DMR6) from Arabidopsis is a negative regulator of plant immunity and its loss of function confers resistance to downy mildew. In grapevine, DMR6 is present in two copies, named VvDMR6-1 and VvDMR6-2. Here, we describe the editing of VvDMR6-1 in embryogenic calli using CRISPR/Cas9 and the regeneration of the edited plants. All edited plants were found to be biallelic and chimeric, and whilst they all showed reduced growth compared with non-transformed control plants, they also had reduced susceptibility to P. viticola. Comparison between mock-inoculated genotypes showed that all edited lines presented higher levels of salicylic acid than controls, and lines subjected to transformation presented higher levels of cis-resveratrol than controls. Our results identify VvDMR6-1 as a promising target for breeding grapevine cultivars with improved resistance to downy mildew.


Assuntos
Oomicetos , Vitis , Resistência à Doença/genética , Sistemas CRISPR-Cas , Melhoramento Vegetal , Vitis/genética , Doenças das Plantas
5.
Transgenic Res ; 33(1-2): 67-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573428

RESUMO

Genome editing via CRISPR/Cas has enabled targeted genetic modifications in various species, including plants. The requirement for specific protospacer-adjacent motifs (PAMs) near the target gene, as seen with Cas nucleases like SpCas9, limits its application. PAMless SpCas9 variants, designed with a relaxed PAM requirement, have widened targeting options. However, these so-call PAMless SpCas9 still show variation of editing efficiency depending on the PAM and their efficiency lags behind the native SpCas9. Here we assess the potential of a PAMless SpCas9 variant for genome editing in the model plant Physcomitrium patens. For this purpose, we developed a SpRYCas9i variant, where expression was optimized, and tested its editing efficiency using the APT as a reporter gene. We show that the near PAMless SpRYCas9i effectively recognizes specific PAMs in P. patens that are not or poorly recognized by the native SpCas9. Pattern of mutations found using the SpRYCas9i are similar to the ones found with the SpCas9 and we could not detect off-target activity for the sgRNAs tested in this study. These findings contribute to advancing versatile genome editing techniques in plants.


Assuntos
Bryopsida , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Mutação , Bryopsida/genética , Genoma de Planta/genética
6.
Plant Biotechnol J ; 21(5): 918-930, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36715107

RESUMO

Resistance to potyviruses in plants has been largely provided by the selection of natural variant alleles of eukaryotic translation initiation factors (eIF) 4E in many crops. However, the sources of such variability for breeding can be limited for certain crop species, while new virus isolates continue to emerge. Different methods of mutagenesis have been applied to inactivate the eIF4E genes to generate virus resistance, but with limited success due to the physiological importance of translation factors and their redundancy. Here, we employed genome editing approaches at the base level to induce non-synonymous mutations in the eIF4E1 gene and create genetic diversity in cherry tomato (Solanum lycopersicum var. cerasiforme). We sequentially edited the genomic sequences coding for two regions of eIF4E1 protein, located around the cap-binding pocket and known to be important for susceptibility to potyviruses. We show that the editing of only one of the two regions, by gene knock-in and base editing, respectively, is not sufficient to provide resistance. However, combining amino acid mutations in both regions resulted in resistance to multiple potyviruses without affecting the functionality in translation initiation. Meanwhile, we report that extensive base editing in exonic region can alter RNA splicing pattern, resulting in gene knockout. Altogether our work demonstrates that precision editing allows to design plant factors based on the knowledge on evolutionarily selected alleles and enlarge the gene pool to potentially provide advantageous phenotypes such as pathogen resistance.


Assuntos
Potyvirus , Solanum lycopersicum , Edição de Genes , Solanum lycopersicum/genética , Fator de Iniciação 4E em Eucariotos/genética , Potyvirus/genética , Proteínas de Plantas/genética , Melhoramento Vegetal , Mutação , Doenças das Plantas/genética
7.
J Exp Bot ; 74(19): 6176-6187, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37243510

RESUMO

Efficient and precise gene editing is the gold standard of any reverse genetic study. The recently developed prime editing approach, a modified CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] editing method, has reached the precision goal but its editing rate can be improved. We present an improved methodology that allows for routine prime editing in the model plant Physcomitrium patens, whilst exploring potential new prime editing improvements. Using a standardized protoplast transfection procedure, multiple prime editing guide RNA (pegRNA) structural and prime editor variants were evaluated targeting the APT reporter gene through direct plant selection. Together, enhancements of expression of the prime editor, modifications of the 3' extension of the pegRNA, and the addition of synonymous mutation in the reverse transcriptase template sequence of the pegRNA dramatically improve the editing rate without affecting the quality of the edits. Furthermore, we show that prime editing is amenable to edit a gene of interest through indirect selection, as demonstrated by the generation of a Ppdek10 mutant. Additionally, we determine that a plant retrotransposon reverse transcriptase enables prime editing. Finally, we show for the first time the possibility of performing prime editing with two independently coded peptides.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , DNA Polimerase Dirigida por RNA
8.
Plant J ; 108(6): 1786-1797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687260

RESUMO

In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.


Assuntos
Bryopsida/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Transmissão Vertical de Doenças Infecciosas , Filogenia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Replicação Viral
9.
Plant J ; 106(3): 831-843, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33599020

RESUMO

Spatially directed cell division and expansion is important for plant growth and morphogenesis and relies on cooperation between the cytoskeleton and the secretory pathway. The phylogenetically conserved octameric complex exocyst mediates exocytotic vesicle tethering at the plasma membrane. Unlike other exocyst subunits of land plants, the core exocyst subunit SEC6 exists as a single paralog in Physcomitrium patens and Arabidopsis thaliana genomes. Arabidopsis SEC6 (AtSEC6) loss-of-function (LOF) mutation causes male gametophytic lethality. Our attempts to inactivate the P. patens SEC6 gene, PpSEC6, using targeted gene replacement produced two independent partial LOF ('weak allele') mutants via perturbation of the PpSEC6 gene locus. These mutants exhibited the same pleiotropic developmental defects: protonema with dominant chloronema stage; diminished caulonemal filament elongation rate; and failure in post-initiation gametophore development. Mutant gametophore buds, mostly initiated from chloronema cells, exhibited disordered cell file organization and cross-wall perforations, resulting in arrested development at the eight- to 10-cell stage. Complementation of both sec6 moss mutant lines by both PpSEC6 and AtSEC6 cDNA rescued gametophore development, including sexual organ differentiation. However, regular sporophyte formation and viable spore production were recovered only by the expression of PpSEC6, whereas the AtSEC6 complementants were only rarely fertile, indicating moss-specific SEC6 functions.


Assuntos
Bryopsida/crescimento & desenvolvimento , Exocitose , Proteínas de Plantas/fisiologia , Bryopsida/genética , Exocitose/genética , Genes de Plantas/genética , Células Germinativas Vegetais , Mutação , Proteínas de Plantas/genética
10.
Crit Rev Biotechnol ; 42(2): 254-270, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34167401

RESUMO

Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.


Assuntos
Tecnologia de Impulso Genético , Animais , Vetores de Doenças , Humanos , Insetos/genética , Espécies Introduzidas , Medição de Risco
11.
Plant Mol Biol ; 107(4-5): 327-336, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33346897

RESUMO

KEY MESSAGE: We mutated all seven Physcomitrium (Physcomitrella) patens phytochrome genes using highly-efficient CRISPR-Cas9 procedures. We thereby identified phy5a as the phytochrome primarily responsible for inhibiting gravitropism, proving the utility of the mutant library. The CRISPR-Cas9 system is a powerful tool for genome editing. Here we report highly-efficient multiplex CRISPR-Cas9 editing of the seven-member phytochrome gene family in the model bryophyte Physcomitrium (Physcomitrella) patens. Based on the co-delivery of an improved Cas9 plasmid with multiple sgRNA plasmids and an efficient screening procedure to identify high-order multiple mutants prior to sequencing, we demonstrate successful targeting of all seven PHY genes in a single transfection. We investigated further aspects of the CRISPR methodology in Physcomitrella, including the significance of spacing between paired sgRNA targets and the efficacy of NHEJ and HDR in repairing the chromosome when excising a complete locus. As proof-of-principle, we show that the septuple phy- mutant remains gravitropic in light, in line with expectations, and on the basis of data from lower order multiplex knockouts conclude that phy5a is the principal phytochrome responsible for inhibiting gravitropism in light. We expect, therefore, that this mutant collection will be valuable for further studies of phytochrome function and that the methods we describe will allow similar approaches to revealing specific functions in other gene families.


Assuntos
Bryopsida/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Família Multigênica , Mutagênese , Fitocromo/genética , Gravitropismo/genética , Gravitropismo/efeitos da radiação , Luz , Mutação , Fenótipo
12.
New Phytol ; 230(3): 1258-1272, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421132

RESUMO

CRISPR-Cas9 has proven to be highly valuable for genome editing in plants, including the model plant Physcomitrium patens. However, the fact that most of the editing events produced using the native Cas9 nuclease correspond to small insertions and deletions is a limitation. CRISPR-Cas9 base editors enable targeted mutation of single nucleotides in eukaryotic genomes and therefore overcome this limitation. Here, we report two programmable base-editing systems to induce precise cytosine or adenine conversions in P. patens. Using cytosine or adenine base editors, site-specific single-base mutations can be achieved with an efficiency up to 55%, without off-target mutations. Using the APT gene as a reporter of editing, we could show that both base editors can be used in simplex or multiplex, allowing for the production of protein variants with multiple amino-acid changes. Finally, we set up a co-editing selection system, named selecting modification of APRT to report gene targeting (SMART), allowing up to 90% efficiency site-specific base editing in P. patens. These two base editors will facilitate gene functional analysis in P. patens, allowing for site-specific editing of a given base through single sgRNA base editing or for in planta evolution of a given gene through the production of randomly mutagenised variants using multiple sgRNA base editing.


Assuntos
Bryopsida , Bryopsida/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Mutagênese Sítio-Dirigida
13.
Plant Cell ; 30(3): 717-736, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514942

RESUMO

RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.


Assuntos
Arabidopsis/metabolismo , Bryopsida/metabolismo , Reparo do DNA/genética , Proteínas de Plantas/metabolismo , RecQ Helicases/metabolismo , Arabidopsis/genética , Bryopsida/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , RecQ Helicases/genética
14.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033083

RESUMO

Genome editing has become a major tool for both functional studies and plant breeding in several species. Besides generating knockouts through the classical CRISPR-Cas9 system, recent development of CRISPR base editing holds great and exciting opportunities for the production of gain-of-function mutants. The PAM requirement is a strong limitation for CRISPR technologies such as base editing, because the base substitution mainly occurs in a small edition window. As precise single amino-acid substitution can be responsible for functions associated to some domains or agronomic traits, development of Cas9 variants with relaxed PAM recognition is of upmost importance for gene function analysis and plant breeding. Recently, the SpCas9-NG variant that recognizes the NGN PAM has been successfully tested in plants, mainly in monocotyledon species. In this work, we studied the efficiency of SpCas9-NG in the model moss Physcomitrella patens and two Solanaceae crops (Solanum lycopersicum and Solanum tuberosum) for both classical CRISPR-generated gene knock-out and cytosine base editing. We showed that the SpCas9-NG greatly expands the scope of genome editing by allowing the targeting of non-canonical NGT and NGA PAMs. The CRISPR toolbox developed in our study opens up new gene function analysis and plant breeding perspectives for model and crop plants.


Assuntos
Bryopsida/genética , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Solanum lycopersicum/genética , Solanum tuberosum/genética , Substituição de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Streptococcus pyogenes/enzimologia
15.
Plant J ; 95(1): 168-182, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681058

RESUMO

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Assuntos
Bryopsida/genética , Conjuntos de Dados como Assunto , Genes de Plantas/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/genética
16.
Plant Biotechnol J ; 17(9): 1736-1750, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30784179

RESUMO

In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR-nCas9-cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single-point mutation through C-to-G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome-editing technologies offers a feasible solution for engineering transgene-free genetic resistance in plants, even across species barriers.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Fator de Iniciação 4E em Eucariotos/genética , Edição de Genes , Pisum sativum/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Alelos , Arabidopsis/genética , Arabidopsis/virologia , Pisum sativum/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
17.
New Phytol ; 222(3): 1380-1391, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636294

RESUMO

Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.


Assuntos
Bryopsida/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Bases , Bleomicina/farmacologia , Bryopsida/efeitos dos fármacos , Bryopsida/efeitos da radiação , Cisplatino/farmacologia , Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Metanossulfonato de Metila/farmacologia , Mutação/genética , Taxa de Mutação , Fenótipo , Raios Ultravioleta , DNA Polimerase teta
18.
Transgenic Res ; 28(Suppl 2): 65-73, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321686

RESUMO

The large French research project GENIUS (2012-2019, https://www6.inra.genius-project_eng/ ) provides a good showcase of current genome editing techniques applied to crop plants. It addresses a large variety of agricultural species (rice, wheat, maize, tomato, potato, oilseed rape, poplar, apple and rose) together with some models (Arabidopsis, Brachypodium, Physcomitrella). Using targeted mutagenesis as its work horse, the project is limited to proof of concept under confined conditions. It mainly covers traits linked to crop culture, such as disease resistance to viruses and fungi, flowering time, plant architecture, tolerance to salinity and plant reproduction but also addresses traits improving the quality of agricultural products for industrial purposes. Examples include virus resistant tomato, early flowering apple and low-amylose starch potato. The wide range of traits illustrates the potential of genome editing towards a more sustainable agriculture through the reduction of pesticides and to the emergence of innovative bio-economy sectors based on custom tailored quality traits.


Assuntos
Agricultura/tendências , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Edição de Genes/métodos , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Genoma de Planta/genética , Mutagênese/genética , Fenótipo
19.
Nucleic Acids Res ; 45(10): 6119-6134, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334831

RESUMO

RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , Precursores de RNA/metabolismo , RNA de Plantas/metabolismo , Proteína EWS de Ligação a RNA/fisiologia , RNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Complexo I de Transporte de Elétrons/metabolismo , Éxons , Íntrons/genética , Mitocôndrias/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Splicing de RNA , Estabilidade de RNA , RNA Mitocondrial , Proteína EWS de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
20.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669298

RESUMO

Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a CBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgene(s) into the host genome. Our successful approach opens up new perspectives for genome engineering by the co-edition of the ALS with other gene(s), leading to transgene-free plants harboring new traits of interest.


Assuntos
Agrobacterium/fisiologia , Sistemas CRISPR-Cas , Citidina/genética , Edição de Genes , Técnicas de Transferência de Genes , Solanum lycopersicum/genética , Solanum tuberosum/genética , Marcação de Genes , Genes de Plantas , Técnicas de Genotipagem , Análise de Sequência de DNA , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa