Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Ecol ; 33(13): e17425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847383

RESUMO

Annual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences. However, the molecular dynamics underlying phenology are still poorly described. In a rhythmic analysis of C. finmarchicus annual gene expression, results reveal that more than 90% of the transcriptome shows significant annual rhythms, with abrupt and dramatic upheaval between the active and diapause life cycle states. This work explores the implication of the circadian clock in the annual timing, which may control epigenetic mechanisms to profoundly modulate gene expression in response to calendar time. Results also suggest an increased light sensitivity during diapause that would ensure the photoperiodic entrainment of the endogenous annual clock.


Assuntos
Relógios Circadianos , Copépodes , Diapausa , Transcriptoma , Animais , Copépodes/genética , Copépodes/fisiologia , Diapausa/genética , Relógios Circadianos/genética , Fotoperíodo , Estações do Ano , Mudança Climática , Zooplâncton/genética , Ritmo Circadiano/genética
2.
BMC Bioinformatics ; 24(1): 391, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853347

RESUMO

BACKGROUND: The rapid development of omics acquisition techniques has induced the production of a large volume of heterogeneous and multi-level omics datasets, which require specific and sometimes complex analyses to obtain relevant biological information. Here, we present ASTERICS (version 2.5), a publicly available web interface for the analyses of omics datasets. RESULTS: ASTERICS is designed to make both standard and complex exploratory and integration analysis workflows easily available to biologists and to provide high quality interactive plots. Special care has been taken to provide a comprehensive documentation of the implemented analyses and to guide users toward sound analysis choices regarding some specific omics data. Data and analyses are organized in a comprehensive graphical workflow within ASTERICS workspace to facilitate the understanding of successive data editions and analyses leading to a given result. CONCLUSION: ASTERICS provides an easy to use platform for omics data exploration and integration. The modular organization of its open source code makes it easy to incorporate new workflows and analyses by external contributors. ASTERICS is available at https://asterics.miat.inrae.fr and can also be deployed using provided docker images.


Assuntos
Software , Fluxo de Trabalho
3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674565

RESUMO

The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.


Assuntos
Histonas , Physarum polycephalum , Animais , Histonas/metabolismo , Physarum polycephalum/genética , Physarum polycephalum/metabolismo , Chaperonas de Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
4.
BMC Evol Biol ; 18(1): 43, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29665771

RESUMO

BACKGROUND: Cavefish populations belonging to the Mexican tetra species Astyanax mexicanus are outstanding models to study the tempo and mode of adaptation to a radical environmental change. They are currently assigned to two main groups, the so-called "old" and "new" lineages, which would have populated several caves independently and at different times. However, we do not have yet accurate estimations of the time frames of evolution of these populations. RESULTS: We reanalyzed the geographic distribution of mitochondrial and nuclear DNA polymorphisms and we found that these data do not support the existence of two cavefish lineages. Using IMa2, a program that allows dating population divergence in addition to demographic parameters, we found that microsatellite polymorphism strongly supports a very recent origin of cave populations (< 20,000 years). We identified a large number of single-nucleotide polymorphisms (SNPs) in transcript sequences of pools of embryos (Pool-seq) belonging to Pachón cave population and a surface population from Texas. Based on summary statistics that can be computed with this SNP data set together with simulations of evolution of SNP polymorphisms in two recently isolated populations, we looked for sets of demographic parameters that allow the computation of summary statistics with simulated populations that are similar to the ones with the sampled populations. In most simulations for which we could find a good fit between the summary statistics of observed and simulated data, the best fit occurred when the divergence between simulated populations was less than 30,000 years. CONCLUSIONS: Although it is often assumed that some cave populations have a very ancient origin, a recent origin of these populations is strongly supported by our analyses of independent sets of nuclear DNA polymorphism. Moreover, the observation of two divergent haplogroups of mitochondrial and nuclear genes with different geographic distributions support a recent admixture of two divergent surface populations, before the isolation of cave populations. If cave populations are indeed only several thousand years old, many phenotypic changes observed in cavefish would thus have mainly involved the fixation of genetic variants present in surface fish populations and within a very short period of time.


Assuntos
Adaptação Biológica/genética , Cavernas , Characidae/genética , Variação Genética , Animais , Characidae/anatomia & histologia , Characidae/classificação , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Evolução Molecular , História Antiga , México , New Mexico , Filogenia , Polimorfismo de Nucleotídeo Único , Texas
5.
Plant Mol Biol ; 96(1-2): 103-118, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143299

RESUMO

KEY MESSAGE: The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.


Assuntos
Quercus/genética , Transcriptoma/genética , Madeira/genética , Madeira/metabolismo
6.
Bioinformatics ; 32(3): 456-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26454273

RESUMO

SUMMARY: Biologists produce large data sets and are in demand of rich and simple web portals in which they can upload and analyze their files. Providing such tools requires to mask the complexity induced by the needed High Performance Computing (HPC) environment. The connection between interface and computing infrastructure is usually specific to each portal. With Jflow, we introduce a Workflow Management System (WMS), composed of jQuery plug-ins which can easily be embedded in any web application and a Python library providing all requested features to setup, run and monitor workflows. AVAILABILITY AND IMPLEMENTATION: Jflow is available under the GNU General Public License (GPL) at http://bioinfo.genotoul.fr/jflow. The package is coming with full documentation, quick start and a running test portal. CONTACT: Jerome.Mariette@toulouse.inra.fr.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Armazenamento e Recuperação da Informação , Internet , Software , Bases de Dados Factuais , Humanos , Fluxo de Trabalho
7.
BMC Genomics ; 16: 112, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25765701

RESUMO

BACKGROUND: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS: The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION: In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética , Transcriptoma/genética , Sequência de Bases , Mapeamento Cromossômico , Especiação Genética , Genoma de Planta , Quercus/genética , Quercus/crescimento & desenvolvimento , Análise de Sequência de RNA
8.
BMC Genomics ; 15: 987, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25407482

RESUMO

BACKGROUND: Arthropod venoms are invaluable sources of bioactive substances with biotechnological application. The limited availability of some venoms, such as those from ants, has restricted the knowledge about the composition and the potential that these biomolecules could represent. In order to provide a global insight on the transcripts expressed in the venom gland of the Brazilian ant species Tetramorium bicarinatum and to unveil the potential of its products, high-throughput approach using Illumina technology has been applied to analyze the genes expressed in active venom glands of this ant species. RESULTS: A total of 212,371,758 pairs of quality-filtered, 100-base-pair Illumina reads were obtained. The de novo assemblies yielded 36,042 contigs for which 27,873 have at least one predicted ORF among which 59.77% produce significant hits in the available databases. The investigation of the reads mapping toxin class revealed a high diversification with the major part consistent with the classical hymenopteran venom protein signature represented by venom allergen (33.3%), followed by a diverse toxin-expression profile including several distinct isoforms of phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin. Moreover, our results revealed for the first time the presence of toxin-like peptides that have been previously identified from unrelated venomous animals such as waprin-like (snakes) and agatoxins (spiders and conus).The non-toxin transcripts were mainly represented by contigs involved in protein folding and translation, consistent with the protein-secretory function of the venom gland tissue. Finally, about 40% of the generated contigs have no hits in the databases with 25% of the predicted peptides bearing signal peptide emphasizing the potential of the investigation of these sequences as source of new molecules. Among these contigs, six putative novel peptides that show homologies with previously identified antimicrobial peptides were identified. CONCLUSIONS: To the best of our knowledge, this work reports the first large-scale analysis of genes transcribed by the venomous gland of the ant species T. bicarinatum and helps with the identification of Hymenoptera toxin arsenal. In addition, results from this study demonstrate that de novo transcriptome assembly allows useful venom gene expression analysis in a species lacking a genome sequence database.


Assuntos
Formigas/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Alérgenos/química , Alérgenos/genética , Sequência de Aminoácidos , Animais , Venenos de Formiga/química , Venenos de Formiga/genética , Venenos de Formiga/metabolismo , Formigas/metabolismo , Biologia Computacional , Proteínas de Insetos/química , Proteínas de Insetos/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Alinhamento de Sequência
9.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942338

RESUMO

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Assuntos
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Glicosilação , Anotação de Sequência Molecular , Peroxidases/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimologia , Análise de Sequência de DNA , Madeira/microbiologia
10.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24256179

RESUMO

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Assuntos
Biotecnologia , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Cruzamento , DNA Complementar/genética , Bases de Dados Genéticas , Tamanho do Genoma , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Família Multigênica , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Árvores
11.
BMC Biol ; 11: 50, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23597128

RESUMO

BACKGROUND: The availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies. RESULTS: In this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable. CONCLUSION: This study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.


Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Endogamia , Meiose/genética , Pinus/genética , Recombinação Genética/genética , Alelos , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas/genética , Ligação Genética , Loci Gênicos/genética , Marcadores Genéticos , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
12.
Sci Rep ; 14(1): 10905, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740939

RESUMO

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Assuntos
Células Epiteliais , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Aldeídos/metabolismo , Glutationa/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Sistemas CRISPR-Cas , Peroxidação de Lipídeos/efeitos dos fármacos
13.
BMC Genomics ; 14: 236, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575249

RESUMO

BACKGROUND: In temperate regions, the time lag between vegetative bud burst and bud set determines the duration of the growing season of trees (i.e. the duration of wood biomass production). Dormancy, the period during which the plant is not growing, allows trees to avoid cold injury resulting from exposure to low temperatures. An understanding of the molecular machinery controlling the shift between these two phenological states is of key importance in the context of climatic change. The objective of this study was to identify genes upregulated during endo- and ecodormancy, the two main stages of bud dormancy. Sessile oak is a widely distributed European white oak species. A forcing test on young trees was first carried out to identify the period most likely to correspond to these two stages. Total RNA was then extracted from apical buds displaying endo- and ecodormancy. This RNA was used for the generation of cDNA libraries, and in-depth transcriptome characterization was performed with 454 FLX pyrosequencing technology. RESULTS: Pyrosequencing produced a total of 495,915 reads. The data were cleaned, duplicated reads removed, and sequences were mapped onto the oak UniGene data. Digital gene expression analysis was performed, with both R statistics and the R-Bioconductor packages (edgeR and DESeq), on 6,471 contigs with read numbers ≥ 5 within any contigs. The number of sequences displaying significant differences in expression level (read abundance) between endo- and ecodormancy conditions ranged from 75 to 161, depending on the algorithm used. 13 genes displaying significant differences between conditions were selected for further analysis, and 11 of these genes, including those for glutathione-S-transferase (GST) and dehydrin xero2 (XERO2) were validated by quantitative PCR. CONCLUSIONS: The identification and functional annotation of differentially expressed genes involved in the "response to abscisic acid", "response to cold stress" and "response to oxidative stress" categories constitutes a major step towards characterization of the molecular network underlying vegetative bud dormancy, an important life history trait of long-lived organisms.


Assuntos
Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais/fisiologia , Quercus/genética , Quercus/fisiologia , Transcriptoma , Ácido Abscísico/fisiologia , Sequência de Bases , Temperatura Baixa , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes de Plantas , Giberelinas/genética , Globulinas/genética , Glicosiltransferases/genética , Quercus/crescimento & desenvolvimento , RNA de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico/genética , Regulação para Cima
14.
BMC Genomics ; 13: 462, 2012 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22958229

RESUMO

BACKGROUND: Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. RESULTS: We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. CONCLUSIONS: NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data.


Assuntos
Software , Análise de Sequência de DNA , Interface Usuário-Computador
15.
Ecotoxicology ; 21(8): 2222-34, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22814884

RESUMO

Due to their ability to explore whole genome response to drugs and stressors, omics-based approaches are widely used in toxicology and ecotoxicology, and identified as powerful tools for future ecological risk assessment and environmental monitoring programs. Understanding the long-term effects of contaminants may indeed benefit from the coupling of genomics and eco-evolutionary hypotheses. Next-generation sequencing provides a new way to investigate pollutants impact, by targeting early responses, screening chemicals, and directly quantifying gene expression, even in organisms without reference genome. Lymnaea stagnalis is a freshwater mollusk in which access to genomic resources is critical for many scientific issues, especially in ecotoxicology. We used 454-pyrosequencing to obtain new transcriptomic resources in L. stagnalis and to preliminarily explore gene expression response to a redox-cycling pesticide, diquat. We obtained 151,967 and 128,945 high-quality reads from control and diquat-exposed individuals, respectively. Sequence assembly provided 141,999 contigs, of which 124,387 were singletons. BlastX search revealed significant match for 34.6 % of the contigs (21.2 % protein hits). KEGG annotation showed a predominance of hits with genes involved in energy metabolism and circulatory system, and revealed more than 400 putative genes involved in oxidative stress, cellular/molecular stress and signaling pathways, apoptosis, and metabolism of xenobiotics. Results also suggest that diquat may have a great diversity of molecular effects. Moreover, new genetic markers (putative SNPs) were discovered. We also created a Ensembl-like web-tool for data-mining ( http://genotoul-contigbrowser.toulouse.inra.fr:9095/Lymnaea_stagnalis/index.html ). This resource is expected to be relevant for any genomic approach aimed at understanding the molecular basis of physiological and evolutionary responses to environmental stress in L. stagnalis.


Assuntos
Diquat/farmacologia , Herbicidas/farmacologia , Lymnaea/efeitos dos fármacos , Lymnaea/genética , Transcriptoma , Animais , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Análise de Sequência de DNA
16.
Ecol Evol ; 12(2): e8605, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35228860

RESUMO

The copepod Calanus finmarchicus (Crustacea, Copepoda) is a key zooplanktonic species with a crucial position in the North Atlantic food web and significant contributor to ocean carbon flux. Like many other high latitude animals, it has evolved a programmed arrested development called diapause to cope with long periods of limited food supply, while growth and reproduction are timed to take advantage of seasonal peaks in primary production. However, anthropogenic warming is inducing changes in the expected timing of phytoplankton blooms, suggesting phenological mismatches with negative consequences for the N. Atlantic ecosystem. While diapause mechanisms are mainly studied in terrestrial arthropods, specifically on laboratory model species, such as the fruit fly Drosophila, the molecular investigations of annual rhythms in wild marine species remain fragmentary. Here we performed a rigorous year-long monthly sampling campaign of C. finmarchicus in a Scottish Loch (UK; 56.45°N, 5.18°W) to generate an annual transcriptome. The mRNA of 36 samples (monthly triplicate of 25 individuals) have been deeply sequenced with an average depth of 137 ± 4 million reads (mean ± SE) per sample, aligned to the reference transcriptome, and filtered. We detail the quality assessment of the datasets and provide a high-quality resource for the investigation of wild annual transcriptomic rhythms (35,357 components) in a key diapausing zooplanktonic species.

17.
PLoS One ; 17(8): e0273858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040985

RESUMO

Continuous and rapid renewal of the colonic epithelium is crucial to resist the plethora of luminal deleterious agents. Subepithelial fibroblasts contribute to this turnover by regulating epithelial proliferation and differentiation. However, when intestinal homeostasis is disturbed, fibroblasts can acquire an activated phenotype and play a major role in the progression of intestinal pathologies. To evaluate the involvement of fibroblasts in the regulation of colonocytes under homeostatic or pathological conditions, we established resting and activated conditionally immortalized fibroblast cell lines (nF and mF) from mouse colonic mucosa. We then studied the epithelial-mesenchymal interactions between activated or resting fibroblasts and the normal mouse colonocytes (Co) using a co-culture model. Both fibroblastic cell lines were characterized by RT-qPCR, western blot and immunofluorescence assay. Our results showed that nF and mF cells were positive for fibroblastic markers such as vimentin and collagen 1, and negative for cytokeratin 18 and E-cadherin, attesting to their fibroblastic type. They also expressed proteins characteristic of the epithelial stem cell niche such as Grem1, CD90 or Wnt5a. Only rare nF fibroblasts were positive for α-SMA, whereas all mF fibroblasts strongly expressed this marker, supporting that mF cells were activated fibroblasts/myofibroblasts. In coculture, nF fibroblasts and Co cells strongly interacted via paracrine exchanges resulting in BMP4 production in nF fibroblasts, activation of BMP signaling in Co colonocytes, and decreased growth of colonocytes. Activated-type mF fibroblasts did not exert the same effects on Co cells, allowing colonocytes free to proliferate. In conclusion, these two colonic fibroblast lines, associated with Co cells in coculture, should allow to better understand the role of mesenchymal cells in the preservation of homeostasis and the development of intestinal pathologies.


Assuntos
Colo , Fibroblastos , Animais , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/metabolismo , Camundongos
18.
Genes (Basel) ; 13(8)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36011283

RESUMO

Unraveling the origin of molecular pathways underlying the evolution of adaptive traits is essential for understanding how new lineages emerge, including the relative contribution of conserved ancestral traits and newly evolved derived traits. Here, we investigated the evolutionary divergence of sex pheromone communication from moths (mostly nocturnal) to butterflies (mostly diurnal) that occurred ~119 million years ago. In moths, it is the females that typically emit pheromones to attract male mates, but in butterflies males emit pheromones that are used by females for mate choice. The molecular bases of sex pheromone communication are well understood in moths, but they have remained relatively unexplored in butterflies. We used a combination of transcriptomics, real time qPCR, and phylogenetics to identify genes involved in the different steps (i.e., production, regulation, and reception) of sex pheromone communication of the butterfly Bicyclus anynana. Our results show that the biosynthesis and reception of sex pheromones relies both on moth-specific gene families (reductases) and on more ancestral insect gene families (desaturases, olfactory receptors, odorant binding proteins). Interestingly, B. anynana appears to use what was believed to be the moth-specific neuropeptide Pheromone Biosynthesis Activating Neuropeptide (PBAN) for regulating sex pheromone production. Altogether, our results suggest that a mosaic pattern best explains how sex pheromone communication evolved in butterflies, with some molecular components derived from moths, and others conserved from more ancient insect ancestors. This is the first large-scale investigation of the genetic pathways underlying sex pheromone communication in a butterfly.


Assuntos
Borboletas , Neuropeptídeos , Feromônios , Atrativos Sexuais , Comunicação Animal , Animais , Borboletas/genética , Borboletas/fisiologia , Feminino , Masculino , Mariposas , Feromônios/genética , Atrativos Sexuais/genética
19.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535493

RESUMO

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.


Assuntos
Antineoplásicos , Redutases-Desidrogenases de Cadeia Curta , Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático , Humanos , Lipídeos , Resposta a Proteínas não Dobradas
20.
BMC Genomics ; 12: 538, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22047139

RESUMO

BACKGROUND: In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. RESULTS: Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. CONCLUSIONS: For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.


Assuntos
Eucalyptus/fisiologia , Genótipo , Transcriptoma , Água/fisiologia , Biomassa , Secas , Eucalyptus/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Fenótipo , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Solo/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa