Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mol Cell ; 75(5): 1007-1019.e5, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31471187

RESUMO

The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.


Assuntos
Escherichia coli/química , Conformação de Ácido Nucleico , Pinças Ópticas , RNA Bacteriano/química , RNA Mensageiro/química , Ribossomos/química , Escherichia coli/metabolismo , Fluorescência , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
2.
Nucleic Acids Res ; 52(10): 5950-5958, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38452198

RESUMO

Loss of the translational reading frame leads to misincorporation and premature termination, which can have lethal consequences. Based on structural evidence that A1503 of 16S rRNA intercalates between specific mRNA bases, we tested the possibility that it plays a role in maintenance of the reading frame by constructing ribosomes with an abasic nucleotide at position 1503. This was done by specific cleavage of 16S rRNA at position 1493 using the colicin E3 endonuclease and replacing the resulting 3'-terminal 49mer fragment with a synthetic oligonucleotide containing the abasic site using a novel splinted RNA ligation method. Ribosomes reconstituted from the abasic 1503 16S rRNA were highly active in protein synthesis but showed elevated levels of spontaneous frameshifting into the -1 reading frame. We then asked whether the residual frameshifting persisting in control ribosomes containing an intact A1503 is due to the absence of the N6-dimethyladenosine modifications at positions 1518 and 1519. Indeed, this frameshifting was rescued by site-specific methylation in vitro by the ksgA methylase. These findings thus implicate two different sites near the 3' end of 16S rRNA in maintenance of the translational reading frame, providing yet another example of a functional role for ribosomal RNA in protein synthesis.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Biossíntese de Proteínas , RNA Ribossômico 16S , Ribossomos , RNA Ribossômico 16S/genética , Ribossomos/metabolismo , Ribossomos/genética , Nucleotídeos/química , Nucleotídeos/genética , Metilação , Fases de Leitura Aberta , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Conformação de Ácido Nucleico , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química
3.
Proc Natl Acad Sci U S A ; 119(44): e2212502119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282914

RESUMO

Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.


Assuntos
Fator G para Elongação de Peptídeos , Ribossomos , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/química , Guanosina Trifosfato/química , Hidrólise , Ribossomos/metabolismo , RNA de Transferência/química , RNA Mensageiro/química , GTP Fosfo-Hidrolases/genética , Pirenos/análise , Guanosina
4.
RNA ; 28(5): 623-644, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35115361

RESUMO

The ribosomal RNAs, along with their substrates the transfer RNAs, contain the most highly conserved nucleotides in all of biology. We have assembled a database containing structure-based alignments of sequences of the small-subunit rRNAs from organisms that span the entire phylogenetic spectrum, to identify the nucleotides that are universally conserved. In its simplest (bacterial and archaeal) forms, the small-subunit rRNA has ∼1500 nt, of which we identify 140 that are absolutely invariant among the 1961 species in our alignment. We examine the positions and detailed structural and functional interactions of these universal nucleotides in the context of a half century of biochemical and genetic studies and high-resolution structures of ribosome functional complexes. The vast majority of these nucleotides are exposed on the subunit interface surface of the small subunit, where the functional processes of the ribosome take place. However, only 40 of them have been directly implicated in specific ribosomal functions, such as contacting the tRNAs, mRNA, or translation factors. The roles of many other invariant nucleotides may serve to constrain the positions and orientations of those nucleotides that are directly involved in function. Yet others can be rationalized by participation in unusual noncanonical tertiary structures that may uniquely allow correct folding of the rRNA to form a functional ribosome. However, there remain at least 50 nt whose universal conservation is not obvious, serving as a metric for the incompleteness of our understanding of ribosome structure and function.


Assuntos
Nucleotídeos , RNA Ribossômico , Conformação de Ácido Nucleico , Nucleotídeos/genética , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Ribossomos/genética
5.
RNA ; 27(1): 40-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008838

RESUMO

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Assuntos
Escherichia coli/genética , Mudança da Fase de Leitura do Gene Ribossômico , Mutação , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/genética , Ribossomos/genética , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Códon/química , Códon/metabolismo , Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Mensageiro , RNA de Transferência , Fases de Leitura , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(19): 10271-10277, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341159

RESUMO

Viomycin, an antibiotic that has been used to fight tuberculosis infections, is believed to block the translocation step of protein synthesis by inhibiting ribosomal subunit dissociation and trapping the ribosome in an intermediate state of intersubunit rotation. The mechanism by which viomycin stabilizes this state remains unexplained. To address this, we have determined cryo-EM and X-ray crystal structures of Escherichia coli 70S ribosome complexes trapped in a rotated state by viomycin. The 3.8-Å resolution cryo-EM structure reveals a ribosome trapped in the hybrid state with 8.6° intersubunit rotation and 5.3° rotation of the 30S subunit head domain, bearing a single P/E state transfer RNA (tRNA). We identify five different binding sites for viomycin, four of which have not been previously described. To resolve the details of their binding interactions, we solved the 3.1-Å crystal structure of a viomycin-bound ribosome complex, revealing that all five viomycins bind to ribosomal RNA. One of these (Vio1) corresponds to the single viomycin that was previously identified in a complex with a nonrotated classical-state ribosome. Three of the newly observed binding sites (Vio3, Vio4, and Vio5) are clustered at intersubunit bridges, consistent with the ability of viomycin to inhibit subunit dissociation. We propose that one or more of these same three viomycins induce intersubunit rotation by selectively binding the rotated state of the ribosome at dynamic elements of 16S and 23S rRNA, thus, blocking conformational changes associated with molecular movements that are required for translocation.


Assuntos
Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Viomicina/farmacologia , Antibacterianos/farmacologia , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química
7.
Proc Natl Acad Sci U S A ; 116(16): 7813-7818, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936299

RESUMO

The elongation factor G (EF-G)-catalyzed translocation of mRNA and tRNA through the ribosome is essential for vacating the ribosomal A site for the next incoming aminoacyl-tRNA, while precisely maintaining the translational reading frame. Here, the 3.2-Å crystal structure of a ribosome translocation intermediate complex containing mRNA and two tRNAs, formed in the absence of EF-G or GTP, provides insight into the respective roles of EF-G and the ribosome in translocation. Unexpectedly, the head domain of the 30S subunit is rotated by 21°, creating a ribosomal conformation closely resembling the two-tRNA chimeric hybrid state that was previously observed only in the presence of bound EF-G. The two tRNAs have moved spontaneously from their A/A and P/P binding states into ap/P and pe/E states, in which their anticodon loops are bound between the 30S body domain and its rotated head domain, while their acceptor ends have moved fully into the 50S P and E sites, respectively. Remarkably, the A-site tRNA translocates fully into the classical P-site position. Although the mRNA also undergoes movement, codon-anticodon interaction is disrupted in the absence of EF-G, resulting in slippage of the translational reading frame. We conclude that, although movement of both tRNAs and mRNA (along with rotation of the 30S head domain) can occur in the absence of EF-G and GTP, EF-G is essential for enforcing coupled movement of the tRNAs and their mRNA codons to maintain the reading frame.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , RNA Mensageiro , RNA de Transferência , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/metabolismo , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
8.
RNA ; 25(3): 364-375, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552154

RESUMO

Protein synthesis in all organisms proceeds by stepwise translocation of the ribosome along messenger RNAs (mRNAs), during which the helicase activity of the ribosome unwinds encountered structures in the mRNA. This activity is known to occur near the mRNA tunnel entrance, which is lined by ribosomal proteins uS3, uS4, and uS5. However, the mechanism(s) of mRNA unwinding by the ribosome and the possible role of these proteins in the helicase activity are not well understood. Here, we present a crystal structure of the Escherichia coli ribosome in which single-stranded mRNA is observed beyond the tunnel entrance, interacting in an extended conformation with a positively charged patch on ribosomal protein uS3 immediately outside the entrance. This apparent binding specificity for single-stranded mRNA ahead of the tunnel entrance suggests that product stabilization may play a role in the unwinding of structured mRNA by the ribosomal helicase.


Assuntos
RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/genética , Ribossomos/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Relação Estrutura-Atividade
9.
Nature ; 519(7541): 110-3, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652826

RESUMO

The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.


Assuntos
Bactérias/genética , Eucariotos/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , RNA/química , RNA/genética , Ribossomos/metabolismo , Sequência de Bases , Sequência Conservada/genética , Cristalografia por Raios X , Dicistroviridae/genética , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica/genética , RNA/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/química
10.
Q Rev Biophys ; 50: e12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233224

RESUMO

Ribosomes are remarkable ribonucleoprotein complexes that are responsible for protein synthesis in all forms of life. They polymerize polypeptide chains programmed by nucleotide sequences in messenger RNA in a mechanism mediated by transfer RNA. One of the most challenging problems in the ribosome field is to understand the mechanism of coupled translocation of mRNA and tRNA during the elongation phase of protein synthesis. In recent years, the results of structural, biophysical and biochemical studies have provided extensive evidence that translocation is based on the structural dynamics of the ribosome itself. Detailed structural analysis has shown that ribosome dynamics, like aminoacyl-tRNA selection and catalysis of peptide bond formation, is made possible by the properties of ribosomal RNA.


Assuntos
RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Animais , Transporte Biológico , Movimento , Biossíntese de Proteínas , RNA Ribossômico/genética , Ribossomos/genética
11.
Nature ; 475(7354): 118-21, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734708

RESUMO

The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.


Assuntos
Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/metabolismo , Pareamento de Bases , Sequência de Bases , Códon/genética , Sequência Rica em GC/genética , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Pinças Ópticas , Elongação Traducional da Cadeia Peptídica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/enzimologia , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 111(37): 13325-30, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25187561

RESUMO

During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.


Assuntos
Modelos Moleculares , Subunidades Ribossômicas/química , Rotação , Sequência de Bases , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , Espectinomicina/química , Espectinomicina/metabolismo , Thermus thermophilus/metabolismo
13.
Mol Cell ; 30(5): 578-88, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18538656

RESUMO

During the elongation cycle, tRNA and mRNA undergo coupled translocation through the ribosome catalyzed by elongation factor G (EF-G). Cryo-EM reconstructions of certain EF-G-containing complexes led to the proposal that the mechanism of translocation involves rotational movement between the two ribosomal subunits. Here, using single-molecule FRET, we observe that pretranslocation ribosomes undergo spontaneous intersubunit rotational movement in the absence of EF-G, fluctuating between two conformations corresponding to the classical and hybrid states of the translocational cycle. In contrast, posttranslocation ribosomes are fixed predominantly in the classical, nonrotated state. Movement of the acceptor stem of deacylated tRNA into the 50S E site and EF-G binding to the ribosome both contribute to stabilization of the rotated, hybrid state. Furthermore, the acylation state of P site tRNA has a dramatic effect on the frequency of intersubunit rotation. Our results provide direct evidence that the intersubunit rotation that underlies ribosomal translocation is thermally driven.


Assuntos
Subunidades Proteicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Rotação , Escherichia coli/enzimologia , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Cinética , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Subunidades Proteicas/química , Transporte Proteico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoacilação de RNA de Transferência
14.
Proc Natl Acad Sci U S A ; 110(52): 20964-9, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324168

RESUMO

During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , Elongação Traducional da Cadeia Peptídica/fisiologia , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli , Processamento de Imagem Assistida por Computador , RNA de Transferência/metabolismo
15.
RNA ; 19(2): 158-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23249745

RESUMO

In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transporte de RNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Antibacterianos/metabolismo , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Clindamicina/metabolismo , Clindamicina/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Lincomicina/metabolismo , Lincomicina/farmacologia , Fator G para Elongação de Peptídeos/efeitos dos fármacos , Fator G para Elongação de Peptídeos/metabolismo , Peptidil Transferases/efeitos dos fármacos , Peptidil Transferases/metabolismo , RNA Bacteriano/efeitos dos fármacos , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/efeitos dos fármacos , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Esparsomicina/metabolismo , Esparsomicina/farmacologia
16.
Proc Natl Acad Sci U S A ; 109(50): 20391-4, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23188795

RESUMO

Elongation factor-G-catalyzed translocation of mRNA and tRNAs during protein synthesis involves large-scale conformational changes in the ribosome. Formation of hybrid-state intermediates is coupled to counterclockwise (forward) rotation of the body of the 30S subunit. Recent structural studies implicate intrasubunit rotation of the 30S head in translocation. Here, we observe rotation of the head during translocation in real time using ensemble stopped-flow FRET with ribosomes containing fluorescent probes attached to specific positions in the head and body of the 30S subunit. Our results allow ordering of the rates of movement of the 30S subunit body and head during translocation: body forward > head forward > head reverse ≥ body reverse. The rate of quenching of pyrene-labeled mRNA is consistent with coupling of mRNA translocation to head rotation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico Ativo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Guanosina Trifosfato/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fator G para Elongação de Peptídeos/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , Subunidades Ribossômicas Menores de Bactérias/genética
17.
Proc Natl Acad Sci U S A ; 109(36): 14458-63, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908248

RESUMO

The sequence and secondary structure of the 5'-end of mRNAs regulate translation by controlling ribosome initiation on the mRNA. Ribosomal protein S1 is crucial for ribosome initiation on many natural mRNAs, particularly for those with structured 5'-ends, or with no or weak Shine-Dalgarno sequences. Besides a critical role in translation, S1 has been implicated in several other cellular processes, such as transcription recycling, and the rescuing of stalled ribosomes by tmRNA. The mechanisms of S1 functions are still elusive but have been widely considered to be linked to the affinity of S1 for single-stranded RNA and its corresponding destabilization of mRNA secondary structures. Here, using optical tweezers techniques, we demonstrate that S1 promotes RNA unwinding by binding to the single-stranded RNA formed transiently during the thermal breathing of the RNA base pairs and that S1 dissociation results in RNA rezipping. We measured the dependence of the RNA unwinding and rezipping rates on S1 concentration, and the force applied to the ends of the RNA. We found that each S1 binds 10 nucleotides of RNA in a multistep fashion implying that S1 can facilitate ribosome initiation on structured mRNA by first binding to the single strand next to an RNA duplex structure ("stand-by site") before subsequent binding leads to RNA unwinding. Unwinding by multiple small substeps is much less rate limited by thermal breathing than unwinding in a single step. Thus, a multistep scheme greatly expedites S1 unwinding of an RNA structure compared to a single-step mode.


Assuntos
Modelos Biológicos , Conformação de Ácido Nucleico , Biossíntese de Proteínas/fisiologia , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Escherichia coli , Pinças Ópticas , Reação em Cadeia da Polimerase , Biossíntese de Proteínas/genética , RNA de Cadeia Dupla/química , RNA Mensageiro/química , Proteínas Ribossômicas/química
18.
EMBO J ; 29(15): 2577-85, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20588254

RESUMO

We report the crystal structure of a termination complex containing release factor RF1 bound to the 70S ribosome in response to an amber (UAG) codon at 3.6-A resolution. The amber codon is recognized in the 30S subunit-decoding centre directly by conserved elements of domain 2 of RF1, including T186 of the PVT motif. Together with earlier structures, the mechanisms of recognition of all three stop codons by release factors RF1 and RF2 can now be described. Our structure confirms that the backbone amide of Q230 of the universally conserved GGQ motif is positioned to contribute directly to the catalysis of the peptidyl-tRNA hydrolysis reaction through stabilization of the leaving group and/or transition state. We also observe synthetic-negative interactions between mutations in the switch loop of RF1 and in helix 69 of 23S rRNA, revealing that these structural features interact functionally in the termination process. These findings are consistent with our proposal that structural rearrangements of RF1 and RF2 are critical to accurate translation termination.


Assuntos
Proteínas de Bactérias/química , Códon de Terminação/química , Fatores de Terminação de Peptídeos/química , Thermus thermophilus/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Biocatálise , Códon de Terminação/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Thermus thermophilus/metabolismo
19.
RNA ; 18(2): 230-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22187675

RESUMO

The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 Å crystal structure of the RF3·GDPNP·ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7° rotation of the body and 14° rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.


Assuntos
Proteínas de Escherichia coli/química , Guanosina Trifosfato/química , Fatores de Terminação de Peptídeos/química , Ribossomos/química , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , Translocação Genética/efeitos dos fármacos , Translocação Genética/genética , Viomicina/farmacologia
20.
RNA Biol ; 11(3): 225-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637459

RESUMO

Not long after my arrival at UCSC as an assistant professor, I came across Carl Woese's paper "Molecular Mechanics of Translation: A Reciprocating Ratchet Mechanism." (1) In the days before the crystal structure of tRNA was known, Fuller and Hodgson (2) had proposed two alternative conformations for its anticodon loop; one was stacked on the 3' side (as later found in the crystal structure) and the other on the 5' side. In an ingenious and elegant model, Woese proposed that the conformation of the loop flips between Fuller and Hodgson's 5'- and 3'-stacked forms during protein synthesis, changing the local direction of the mRNA such that the identities of the tRNA binding sites alternated between binding aminoacyl-tRNA and peptidyl-tRNA. The model predicted that there are no A and P sites, only two binding sites whose identities changed following translation of each codon, and that there would be no translocation of tRNAs in the usual sense--only binding and release. I met Carl in person the following year when he presented a seminar on his ratchet model in Santa Cruz. He was chatting in my colleague Ralph Hinegardner's office in what Carl termed a "Little Jack Horner appointment" (the visitor sits and listens to his host describing "What a good boy am I"). He was of compact stature, and bore a striking resemblance to Oskar Werner in Truffaut's film "Jules and Jim." He projected the impression of a New-Age guru--a shiny black amulet suspended over the front of his black turtleneck sweater and a crown of prematurely white hair. Ralph asked me to explain to Carl what we were doing with ribosomes. I quickly summarized our early experiments that were pointing to a functional role for 16S rRNA. Carl regarded me silently, with a penetrating stare. He then turned to Ralph and said, in an ominous low voice, "I'm going to have some more tanks made as soon as I get back." Carl's beautiful model was, unfortunately, wrong--it was simpler and more elegant than the complex mechanism that Nature actually uses. Unyielding, Carl railed against the A-site-P-site model at every opportunity, and although we ended up enjoying a long, intense, and fruitful collaboration, and became close, life-long friends, I finally gave up trying to describe to him our biochemical and crystallographic results on the A, P, and E sites.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico/química , RNA de Transferência/química , Evolução Molecular , RNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa