Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 290(27): 16595-606, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26023235

RESUMO

The molecular seal between epithelial cells, called the tight junction (TJ), is built by several membrane proteins, with claudins playing the most prominent role. The scaffold proteins of the zonula occludens family are required for the correct localization of claudins and hence formation of the TJ. The intracellular C terminus of claudins binds to the N-terminal PDZ domain of zonula occludens proteins (PDZ1). Of the 23 identified human claudin proteins, nine possess a tyrosine at the -6 position. Here we show that the claudin affinity for PDZ1 is dependent on the presence or absence of this tyrosine and that the affinity is reduced if the tyrosine is modified by phosphorylation. The PDZ1 ß2-ß3 loop undergoes a significant conformational change to accommodate this tyrosine. Cell culture experiments support a regulatory role for this tyrosine. Plasticity has been recognized as a critical property of TJs that allow cell remodeling and migration. Our work provides a molecular framework for how TJ plasticity may be regulated.


Assuntos
Claudina-1/metabolismo , Claudina-2/metabolismo , Proteína da Zônula de Oclusão-1/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Claudina-1/química , Claudina-1/genética , Claudina-2/química , Claudina-2/genética , Humanos , Dados de Sequência Molecular , Domínios PDZ , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Junções Íntimas/química , Junções Íntimas/genética , Junções Íntimas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 68-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419380

RESUMO

Deoxycytidine kinase (dCK) is a key enzyme in the nucleoside salvage pathway that is also required for the activation of several anticancer and antiviral nucleoside analog prodrugs. Additionally, dCK has been implicated in immune disorders and has been found to be overexpressed in several cancers. To allow the probing and modulation of dCK activity, a new class of small-molecule inhibitors of the enzyme were developed. Here, the structural characterization of four of these inhibitors in complex with human dCK is presented. The structures reveal that the compounds occupy the nucleoside-binding site and bind to the open form of dCK. Surprisingly, a slight variation in the nature of the substituent at the 5-position of the thiazole ring governs whether the active site of the enzyme is occupied by one or two inhibitor molecules. Moreover, this substituent plays a critical role in determining the affinity, improving it from >700 to 1.5 nM in the best binder. These structures lay the groundwork for future modifications that would result in even tighter binding and the correct placement of moieties that confer favorable pharmacodynamics and pharmacokinetic properties.


Assuntos
Desoxicitidina Quinase/antagonistas & inibidores , Desoxicitidina Quinase/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Difosfato de Uridina/metabolismo
3.
Biochemistry ; 51(34): 6816-26, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22861376

RESUMO

Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. Bacterial asparaginases are used in cancer chemotherapy to deplete asparagine from the blood, because several hematological malignancies depend on extracellular asparagine for growth. To avoid the immune response against the bacterial enzymes, it would be beneficial to replace them with human asparaginases. However, unlike the bacterial asparaginases, the human enzymes have a millimolar K(m) value for asparagine, making them inefficient in depleting the amino acid from blood. To facilitate the development of human variants suitable for therapeutic use, we determined the structure of human l-asparaginase (hASNase3). This asparaginase is an N-terminal nucleophile (Ntn) family member that requires autocleavage between Gly167 and Thr168 to become catalytically competent. For most Ntn hydrolases, this autoproteolytic activation occurs efficiently. In contrast, hASNas3 is relatively stable in its uncleaved state, and this allowed us to observe the structure of the enzyme prior to cleavage. To determine the structure of the cleaved state, we exploited our discovery that the free amino acid glycine promotes complete cleavage of hASNase3. Both enzyme states were elucidated in the absence and presence of the product aspartate. Together, these structures provide insight into the conformational changes required for cleavage and the precise enzyme-substrate interactions. The new understanding of hASNase3 will serve to guide the design of variants that possess a decreased K(m) value for asparagine, making the human enzyme a suitable replacement for the bacterial asparaginases in cancer therapy.


Assuntos
Asparaginase/química , Asparaginase/metabolismo , Asparagina/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Asparaginase/genética , Sítios de Ligação , Biocatálise , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
4.
J Biol Chem ; 286(50): 43352-60, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22030391

RESUMO

Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe(-2) and Ser(-3) residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.


Assuntos
Proteínas de Membrana/metabolismo , Domínios PDZ/fisiologia , Fosfoproteínas/metabolismo , Domínios de Homologia de src/fisiologia , Moléculas de Adesão Celular/metabolismo , Cristalografia por Raios X , Humanos , Moléculas de Adesão Juncional , Proteínas de Membrana/química , Proteínas de Membrana/genética , Domínios PDZ/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1 , Domínios de Homologia de src/genética
5.
Genes Cells ; 13(5): 471-81, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18429819

RESUMO

Human Rad51 is a key element of recombinational DNA repair and is related to the resistance of cancer cells to chemo- and radiotherapies. The protein is thus a potential target of anti-cancer treatment. The crystallographic analysis shows that the BRC-motif of the BRCA2 tumor suppressor is in contact with the subunit-subunit interface of Rad51 and could thus prevent filament formation of Rad51. However, biochemical analysis indicates that a BRC-motif peptide of 69 amino acids preferentially binds to the N-terminal part of Rad51. We show experimentally that a short peptide of 28 amino acids derived from the BRC4 motif binds to the subunit-subunit interface and dissociates its filament, both in the presence and absence of DNA, certainly by binding to dissociated monomers. The inhibition is efficient and specific for Rad51: the peptide does not even interact with Rad51 homologs or prevent their interaction with DNA. Neither the N-terminal nor the C-terminal half of the peptide interacts with human Rad51, indicating that both parts are involved in the interaction, as expected from the crystal structure. These results suggest the possibility of developing inhibitors of human Rad51 based on this peptide.


Assuntos
Proteína BRCA2/química , Proteína BRCA2/metabolismo , Peptídeos/farmacologia , Rad51 Recombinase/antagonistas & inibidores , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose , DNA/metabolismo , Humanos , Peptídeos/química , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo
6.
Protein Sci ; 26(11): 2240-2248, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28851027

RESUMO

Mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ-tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MOZART1 in Escherichia coli and assessed the properties of the purified protein using a combination of size exclusion chromatography coupled with multiangle light scattering (SEC-MALS), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) experiments. MOZART1 forms heterogeneous oligomers in solution. We identified optimal detergent and buffer conditions for recording well resolved NMR experiments allowing nearly full protein assignment and identification of three distinct alpha-helical structured regions. Finally, using NMR, we showed that MOZART1 interacts with the N-terminus (residues 1-250) of GCP3 (γ-tubulin complex protein 3). Our data illustrate the capacity of MOZART1 to form oligomers, promoting multiple contacts with a subset of protein partners in the context of microtubule nucleation.


Assuntos
Sequência Conservada , Proteínas Associadas aos Microtúbulos/química , Sequência de Aminoácidos , Arabidopsis/química , Betaína/análogos & derivados , Betaína/química , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
J Mol Biol ; 426(13): 2471-85, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24768817

RESUMO

Our long-term goal is the design of a human l-asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.


Assuntos
Asparaginase/química , Asparaginase/metabolismo , Substituição de Aminoácidos , Asparaginase/genética , Asparagina/metabolismo , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Humanos , Hidrólise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Treonina/química
8.
J Med Chem ; 57(22): 9480-94, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25341194

RESUMO

Recently, we have shown that small molecule dCK inhibitors in combination with pharmacological perturbations of de novo dNTP biosynthetic pathways could eliminate acute lymphoblastic leukemia cells in animal models. However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic properties. We delineated the sites of the inhibitor for modification, guided by crystal structures of dCK in complex with the lead compound and with derivatives. Crystal structure of the complex between dCK and the racemic mixture of our new lead compound indicated that the R-isomer is responsible for kinase inhibition. This was corroborated by kinetic analysis of the purified enantiomers, which showed that the R-isomer has >60-fold higher affinity than the S-isomer for dCK. This new lead compound has significantly improved metabolic stability, making it a prime candidate for dCK-inhibitor based therapies against hematological malignancies and, potentially, other cancers.


Assuntos
Desoxicitidina Quinase/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Animais , Antineoplásicos/química , Sítios de Ligação , Química Farmacêutica/métodos , Simulação por Computador , Cristalografia por Raios X , Desoxicitidina/análogos & derivados , Desenho de Fármacos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/metabolismo , Fosforilação , Tomografia por Emissão de Pósitrons , Estereoisomerismo , Tiazóis/química
9.
J Exp Med ; 211(3): 473-86, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24567448

RESUMO

Pharmacological targeting of metabolic processes in cancer must overcome redundancy in biosynthetic pathways. Deoxycytidine (dC) triphosphate (dCTP) can be produced both by the de novo pathway (DNP) and by the nucleoside salvage pathway (NSP). However, the role of the NSP in dCTP production and DNA synthesis in cancer cells is currently not well understood. We show that acute lymphoblastic leukemia (ALL) cells avoid lethal replication stress after thymidine (dT)-induced inhibition of DNP dCTP synthesis by switching to NSP-mediated dCTP production. The metabolic switch in dCTP production triggered by DNP inhibition is accompanied by NSP up-regulation and can be prevented using DI-39, a new high-affinity small-molecule inhibitor of the NSP rate-limiting enzyme dC kinase (dCK). Positron emission tomography (PET) imaging was useful for following both the duration and degree of dCK inhibition by DI-39 treatment in vivo, thus providing a companion pharmacodynamic biomarker. Pharmacological co-targeting of the DNP with dT and the NSP with DI-39 was efficacious against ALL models in mice, without detectable host toxicity. These findings advance our understanding of nucleotide metabolism in leukemic cells, and identify dCTP biosynthesis as a potential new therapeutic target for metabolic interventions in ALL and possibly other hematological malignancies.


Assuntos
Vias Biossintéticas/fisiologia , Desoxicitidina Quinase/antagonistas & inibidores , Nucleotídeos de Desoxicitosina/biossíntese , Erradicação de Doenças/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Nucleotídeos de Desoxicitosina/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons , Timidina/farmacologia
10.
Chem Biol ; 20(4): 533-40, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23601642

RESUMO

Human asparaginase 3 (hASNase3), which belongs to the N-terminal nucleophile hydrolase superfamily, is synthesized as a single polypeptide that is devoid of asparaginase activity. Intramolecular autoproteolytic processing releases the amino group of Thr168, a moiety required for catalyzing asparagine hydrolysis. Recombinant hASNase3 purifies as the uncleaved, asparaginase-inactive form and undergoes self-cleavage to the active form at a very slow rate. Here, we show that the free amino acid glycine selectively acts to accelerate hASNase3 cleavage both in vitro and in human cells. Other small amino acids such as alanine, serine, or the substrate asparagine are not capable of promoting autoproteolysis. Crystal structures of hASNase3 in complex with glycine in the uncleaved and cleaved enzyme states reveal the mechanism of glycine-accelerated posttranslational processing and explain why no other amino acid can substitute for glycine.


Assuntos
Asparaginase/metabolismo , Glicina/metabolismo , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Biocatálise , Cristalografia por Raios X , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
11.
J Med Chem ; 56(17): 6696-708, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23947754

RESUMO

Combined inhibition of ribonucleotide reductase and deoxycytidine kinase (dCK) in multiple cancer cell lines depletes deoxycytidine triphosphate pools leading to DNA replication stress, cell cycle arrest, and apoptosis. Evidence implicating dCK in cancer cell proliferation and survival stimulated our interest in developing small molecule dCK inhibitors. Following a high throughput screen of a diverse chemical library, a structure-activity relationship study was carried out. Positron Emission Tomography (PET) using (18)F-L-1-(2'-deoxy-2'-FluoroArabinofuranosyl) Cytosine ((18)F-L-FAC), a dCK-specific substrate, was used to rapidly rank lead compounds based on their ability to inhibit dCK activity in vivo. Evaluation of a subset of the most potent compounds in cell culture (IC50 = ∼1-12 nM) using the (18)F-L-FAC PET pharmacodynamic assay identified compounds demonstrating superior in vivo efficacy.


Assuntos
Desoxicitidina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Método de Monte Carlo , Espectrometria de Massas por Ionização por Electrospray
12.
J Med Chem ; 53(15): 5782-91, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20684611

RESUMO

We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.


Assuntos
Antineoplásicos/química , Proteína BRCA2/química , Modelos Moleculares , Peptídeos/química , Rad51 Recombinase/antagonistas & inibidores , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Antineoplásicos/síntese química , Sítios de Ligação , Calorimetria , DNA/química , Humanos , Dados de Sequência Molecular , Peptídeos/síntese química , Rad51 Recombinase/química , Termodinâmica
13.
Biochimie ; 92(12): 1832-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20713120

RESUMO

Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , Rad51 Recombinase/metabolismo , Recombinação Genética , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Ligação Competitiva , Dicroísmo Circular , DNA/genética , Humanos , Cinética , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Análise de Componente Principal , Ligação Proteica , Rad51 Recombinase/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Técnica de Seleção de Aptâmeros , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa